We consider three types of quasicrystal lattices based on the Penrose tiling. We analyze the structural factor of quasicrystal structure and compared it with the structural factor of periodic lattices. By using simulation of a Gaussian beam propagation through the quasicrystal structure we obtain a homogeneous field distribution confirms possibility of the metamaterial regime in a quasicrystal structure.
REFERENCES
1.
M. V.
Rybin
, D. S.
Filonov
, K. B.
Samusev
, P. A.
Belov
, Y. S.
Kivshar
, and M. F.
Limonov
, “Phase diagram for the transition from photonic crystals to dielectric metamaterials
,” Nature communications
6
, 10102
(2015
).2.
E. E.
Maslova
, M. F.
Limonov
, and M. V.
Rybin
, “Dielectric metamaterials with electric response
,” Optics letters
43
, 5516
–5519
(2018
).3.
E.
Maslova
, M. F.
Limonov
, and M. V.
Rybin
, “Transition between a photonic crystal and a metamaterial with electric response in dielectric structures
,” JETP Letters
109
, 340
–344
(2019
).4.
X.
Huang
, Y.
Lai
, Z. H.
Hang
, H.
Zheng
, and C.
Chan
, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials
,” Nature materials
10
, 582
–586
(2011
).5.
J.-W.
Dong
, M.-L.
Chang
, X.-Q.
Huang
, Z. H.
Hang
, Z.-C.
Zhong
, W.-J.
Chen
, Z.-Y.
Huang
, and C. T.
Chan
, “Conical dispersion and effective zero refractive index in photonic quasicrystals
,” Physical review letters
114
, 163901
(2015
).6.
A.
Poddubny
and E.
Ivchenko
, “Photonic quasicrystalline and aperiodic structures
,” Physica E: Low-dimensional Systems and Nanostructures
42
, 1871
–1895
(2010
).7.
E.
Ivchenko
and A.
Poddubny
, “Resonant diffraction of electromagnetic waves from solids (a review
),” Physics of the Solid State
55
, 905
–923
(2013
).8.
S. V.
Li
, Y. S.
Kivshar
, and M. V.
Rybin
, “Toward silicon-based metamaterials
,” ACS Photonics
5
, 4751
–4757
(2018
).
This content is only available via PDF.
© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.