Organic-halide perovskites recently have emerged as a perspective material for being used in solar cells due to their unique physical properties. One of these is ionic migration, that usually is identified as an obstacle in solar cell performance because it decreases the internal stability, which leads to device degradation. However, due to the location of defect levels of migrated ions and their vacancies under the external conditions (sun or voltage), it is possible to create of p-i-n structure inside the perovskite layer. It increases the splitting quasi-fermi level and, thus, the open-circuit voltage and efficiency. Basically, the process is reversible, and without external conditions, ions migrate backward, but if ions are fixed near the boundaries by ion-conducting polymer, it will slow down or even stop ion backward migration. In this work, we are presenting the increasing of open-circuit voltage by inserting polyethylene oxide into perovskite film.

1.
Akihiro
,
K.
,
Kenjiro
,
T.
,
Yasuo
,
S.
&
Tsutomu
,
M.
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
.
J. Am. Chem. Soc.
131
,
6050
1
(
2009
).
2.
Park
,
N. G.
Perovskite solar cells: An emerging photovoltaic technology
.
Materials Today
(
2015
) doi:.
3.
Stranks
,
S. D.
 et al 
Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
.
Science (80-. ).
342
,
341
344
(
2013
).
4.
Wehrenfennig
,
C.
,
Eperon
,
G. E.
,
Johnston
,
M. B.
,
Snaith
,
H. J.
&
Herz
,
L. M.
High charge carrier mobilities and lifetimes in organolead trihalide perovskites
.
Adv. Mater.
26
,
1584
1589
(
2014
).
5.
Cai
,
M.
 et al 
Cost-Performance Analysis of Perovskite Solar Modules
.
Adv. Sci.
4
, (
2017
).
6.
Eperon
,
G. E.
 et al 
Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells
.
Energy Environ. Sci.
7
,
982
988
(
2014
).
7.
Luque
,
A.
&
Hegedus
,
S.
Handbook of Photovoltaic Science and Engineering
.
Handbook of Photovoltaic Science and Engineering
(
2011
). doi:.
8.
Jaysankar
,
M.
 et al 
Perovskite-silicon tandem solar modules with optimised light harvesting
.
Energy Environ. Sci.
11
,
1489
1498
(
2018
).
9.
Hörantner
,
M. T.
 et al 
The Potential of Multijunction Perovskite Solar Cells
.
ACS Energy Lett.
2
,
2506
2513
(
2017
).
10.
Slotcavage
,
D. J.
,
Karunadasa
,
H. I.
&
McGehee
,
M. D.
Light-Induced Phase Segregation in Halide-Perovskite Absorbers
.
ACS Energy Lett.
1
,
1199
1205
(
2016
).
11.
Futscher
,
M. H.
 et al 
Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements
.
Mater. Horizons
6
,
1497
1503
(
2019
).
12.
Eames
,
C.
 et al 
Ionic transport in hybrid lead iodide perovskite solar cells
.
Nat. Commun.
6
,
2
9
(
2015
).
13.
Yun
,
J. S.
 et al 
Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells
.
Adv. Energy Mater.
6
,
1
8
(
2016
).
14.
Yin
,
W. J.
,
Shi
,
T.
&
Yan
,
Y.
Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber
.
Appl. Phys. Lett.
104
, (
2014
).
15.
Gets
,
D.
 et al 
Dipolar cation accumulation at interfaces of perovskite light emitting solar cells
. (
2019
).
16.
Deng
,
Y.
,
Xiao
,
Z.
&
Huang
,
J.
Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability
.
Adv. Energy Mater.
5
,
1
6
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.