Terahertz time-domain spectroscopic polarimetry (THz-TDSP) method was used to experimental study polarization properties of unaligned single-wall carbon nanotube thin films with different geometric parameters on transparent float glass substrates in a frequency range from 0.2 THz to 0.8 THz (corresponding to a wavelength range from ~1.50 mm to ~0.37 mm) ata controlled room temperature of 291–293 K, and a relative humidity of 40–45 %. Frequency dependences of azimuth and ellipticity angles of a polarization ellipse of electromagnetic waves transmitted through the samples were obtained for values of 0.2 Wcm−2, 0.6 Wcm−2, and 1.0 Wcm−2 of an external 980 nm optical pumping, with an external static magnetic field of ~0.3 T. Polarization properties were calculated from temporal waveforms of signals transmitted through the samples at the parallel and the crossed by 45° positions to a transmission direction of the polarizers. A change of 15° in the azimuth angle, and of 10° in the ellipticity angle was achieved. The results show that by using carbon nanomaterials-based structures it is possible to devise efficient and affordable magneto-optically tunable polarization modulators that can be used in the advanced areas of terahertz nanophotonics.

1.
P.
Han
,
X.
Wang
, and
Y.
Zhang
, “
Time-resolved terahertz spectroscopy studies on 2D van der Waals materials
,”
Adv. Optical Mater.
8
,
1900533
(
2020
).
2.
P. Kužel and H.
Němec
, “
Terahertz spectroscopy of nanomaterials: a close look at charge-carrier transport
,”
Adv. Optical Mater.
8
,
1900623
(
2020
).
3.
R.
Wang
,
L.
Xie
,
S.
Hameed
,
C.
Wang
, and
Y.
Ying
, “
Mechanisms and applications of carbon nanotubes in terahertz devices: a review
,”
Carbon
132
,
42
58
(
2018
).
4.
L.
Wu
,
M.
Salehi
,
N.
Koirala
,
J.
Moon
,
S.
Oh
, and
N. P.
Armitage
, “
Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator
,”
Science
354
,
1124
1127
(
2016
).
5.
A. A.
Tonkikh
,
A. S.
Pozharov
,
N. R.
Arutyunyan
,
I. V.
Anoshkin
,
E. I.
Kauppinen
, and
E. D.
Obraztsova
, “
Single-wall carbon nanotube film grown by advanced ethanol chemical vapor deposition process
,”
J. Nanoelectron. Optoelectron.
7
,
99
101
(
2012
).
6.
H.
Kataura
,
Y.
Kumazawa
,
Y.
Maniwa
,
I.
Umezu
,
S.
Suzuki
,
Y.
Ohtsuka
, and
Y.
Achiba
, “
Optical properties of single-wall carbon nanotubes
,”
Synth. Met.
103
,
2555
2558
(
1999
).
7.
B.
Krause
,
R.
Boldt
, and
P.
Pötschke
, “
A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing
,”
Carbon
49
,
1243
1247
(
2011
).
8.
A. G.
Nasibulin
,
A.
Kaskela
,
K.
Mustonen
,
A. S.
Anisimov
,
V.
Ruiz
,
S.
Kivistö
,
S.
Rackauskas
,
M. Y.
Timmermans
,
M.
Pudas
,
B.
Aitchison
,
M.
Kauppinen
,
D. P.
Brown
,
O. G.
Okhotnikov
, and
E. I.
Kauppinen
, “
Multifunctional free-standing single-walled carbon nanotube films
,”
ACS Nano
5
,
3214
3221
(
2011
).
9.
K.
Bogdanov
,
A.
Fedorov
,
V.
Osipov
,
T.
Enoki
,
K.
Takai
,
T.
Hayashi
,
V.
Ermakov
,
S.
Moshkalev
, and
A.
Baranov
, “
Annealing-induced structural changes of carbon onions: high-resolution transmission electron microscopy and Raman studies
,”
Carbon
73
,
78
86
(
2014
).
10.
I. V.
Anoshkin
,
I. I.
Nefedova
,
D. V.
Lioubtchenko
,
I. S.
Nefedov
, and
A. V.
Räisänen
, “
Single walled carbon nanotube quantification method employing the Raman signal intensity
,”
Carbon
116
,
547
552
(
2017
).
11.
A.
Kvitsinskiy
,
P.
Demchenko
,
A.
Grebenchukov
,
E.
Litvinov
,
M.
Masyukov
,
A.
Zaitsev
,
A.
Baldycheva
,
E.
Kovalska
,
A.
Vozianova
, and
M.
Khodzitsky
, “
Polarization properties of few-layer graphene on silicon substrate in terahertz frequency range
,”
SN Appl. Sci.
1
,
1714
(
2019
).
12.
V. G.
Bespalov
,
A. A.
Gorodetskǐi
,
I. Y.
Denisyuk
,
S. A.
Kozlov
,
V. N.
Krylov
,
G. V.
Lukomskǐi
,
N. V.
Petrov
, and
S. E.
Putilin
, “
Methods of generating superbroadband terahertz pulses with femtosecond lasers
,”
J. Opt. Technol.
75
,
636
642
(
2008
).
13.
A.
Kvitsinskiy
,
P.
Demchenko
,
E.
Litvinov
,
M.
Masyukov
,
I.
Anoshkin
,
A.
Vozianova
, and
M.
Khodzitsky
, “
Carbon nanotubes-based magneto-optically tunable structure for terahertz wave polarization control
,”
Opt. Spectrosc.
128
,
1262
1271
(
2020
).
14.
C. M.
Morris
,
R. V.
Aguilar
,
A. V.
Stier
, and
N. P.
Armitage
, “
Polarization modulation time-domain terahertz polarimetry
,”
Opt. Express
20
,
12303
12317
(
2012
).
15.
J.
Vázquez-Cabo
,
P.
Chamorro-Posada
,
F. J.
Fraile-Peláez
,
O.
Rubiños-López
,
J. M.
López-Santos
, and
P.
Martín-Ramos
, “
Windowing of THz time-domain spectroscopy signals: a study based on lactose
,”
Opt. Commun.
366
,
386
396
(
2016
).
16.
N.
Kanda
,
K.
Konishi
, and
M.
Kuwata-Gonokami
, “
Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns
,”
Opt. Express
15
,
11117
11125
(
2007
).
17.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
, 7th ed. (
Cambridge University Press
,
Cambridge
,
2005
).
This content is only available via PDF.
You do not currently have access to this content.