Nanoparticles made from dielectric materials with a high refractive index have caused a surge of interest and have been proposed for various all-dielectric nanophotonic applications. In this regard, the development of optical manipulation technology for such nanoparticles becomes an important task. High-index nanoparticles support electric and magnetic multipole responses in the visible wavelength range, and interference between such modes can manifest itself in optical forces. Here, we present a study of the optical forces acting on silicon nanoparticles in a Gaussian beam, calculated analytically using the Mie theory, as well as the numerical simulations results based on the Maxwell stress tensor. We have shown that the interaction of а laser beam electromagnetic field with electric and magnetic dipoles in a nanoparticle can lead to a possible anti-trapping effect. This behavior of the particle is not typical for optical tweezers, where the particle is usually attracted to the beam axis.

1.
A.
Ashkin
,
J. M.
Dziedzic
,
J. E.
Bjorkholm
,
S. Chu Opt Lett.
,
11
,
288
(
1986
).
2.
I.A.
Favre-Bulle
 et al,
Nat. Commun.
8
,
630
(
2017
).
3.
4.
D.
Zhigunov
,
A.B.
Evlyukhin
,
A.S.
Shalin
,
U.
Zywietz
, and
B.N.
Chichkov
,
ACS Photonics
,
5
(
3
),
977
983
, (
2018
).
5.
Marris-Morini
,
D.
,
Vakarin
,
V.
,
Ramirez
,
J.
,
Liu
,
Q.
,
Ballabio
,
A.
,
Frigerio
,
J.
,
Montesinos
,
M.
,
Alonso-Ramos
,
C.
,
Le Roux
,
X.
,
Serna
,
S.
,
Benedikovic
,
D.
,
Chrastina
,
D.
,
Vivien
,
L.
, and
Isella
,
G.
,
Nanophotonics
7
,
11
,
1781
1793
(
2018
).
6.
A. Canós
Valero
,
D.
Kislov
,
E.A.
Gurvitz
,
H.K.
Shamkhi
,
A.A.
Pavlov
,
D.
Redka
,
S.
Yankin
,
P.
Zemánek
and
A.S.
Shalin
,
Advanced Science
,
1903049
, (
2020
).
7.
K. V.
Baryshnikova
,
A.
Novitsky
,
A. B.
Evlyukhin
and
A. S.
Shalin
,
JOSA B
,
34
,
7
,
D36
D41
, (
2017
).
8.
K.
Baryshnikova
,
D.
Filonov
,
C.
Simovski
,
A.
Evlyukhin
,
A.
Kadochkin
,
E.
Nenasheva
,
P.
Ginzburg
, and
A. S.
Shalin
,
Phys. Rev. B
98
,
165419
, (
2018
).
9.
D.
Kislov
,
D.
Novitsky
,
A.
Kadochkin
,
D.
Redka
,
A.S.
Shalin
, and
P.
Ginzburg
,
Phys.Rev.B
,
101
,
035420
(
2020
).
10.
M. G.
Kucherenko
and
D. A.
Kislov
,
J. Photochem. Photobiol. A Chem.
354
,
25
(
2018
).
11.
S. V.
Izmodenova
,
D. A.
Kislov
, and
M. G.
Kucherenko
,
Colloid J.
76
,
683
(
2014
).
12.
A.
Ivinskaya
,
N.
Kostina
,
A.
Proskurin
,
M.I.
Petrov
,
A.A.
Bogdanov
,
S.
Sukhov
,
A.V.
Krasavin
,
A.
Karabchevsky
,
A.S.
Shalin
, and
P.
Ginzburg
,
ACS Photonics
,
5
(
11
),
4371
4377
, (
2018
).
13.
N.A.
Kostina
,
D.A.
Kislov
,
A.N.
Ivinskaya
,
A.
Proskurin
,
D.N.
Redka
,
A.
Novitsky
,
P.
Ginzburg
, and
A. S.
Shalin
,
ACS Photonics
,
7
,
2
,
425
433
, (
2020
).
14.
P. D.
Terekhov
,
V. E.
Babicheva
,
K. V.
Baryshnikova
,
A. S.
Shalin
,
A.
Karabchevsky
, and
A. B.
Evlyukhin
,
Phys. Rev. B
99
,
045424
(
2019
).
15.
L.
Yue
,
O.
Minin
,
Z.
Wang
,
J.
Monks
,
A.
Shalin
,
I.
Minin
,
Optics Letters
, Vol.
43
, No.
4
,
15
(
2018
).
16.
A.S.
Ang
,
A.
Karabchevsky
,
I.V.
Minin
,
O.V.
Minin
,
S.V.
Sukhov
and
A.S.
Shalin
,
Scientific Reports
,
8
,
2029
, (
2018
).
17.
N.
Kostina
,
M.
Petrov
,
A.
Ivinskaya
,
S.
Sukhov
,
A.
Bogdanov
,
I.
Toftul
,
M.
Nieto-Vesperinas
,
P.
Ginzburg
, and
A. S.
Shalin
,
Phys. Rev. B, B
99
,
125416
, (
2019
).
18.
Mobini
 et al 
J. Appl. Phys.
124
,
173102
(
2018
)
19.
J.
Chen
,
J.
Ng
,
Z.
Lin
, and
C.
Chan
,
Nat. Photon.
5
,
531
(
2011
).
20.
A.
Ivinskaya
,
M. I.
Petrov
,
A. A.
Bogdanov
,
I.
Shishkin
,
P.
Ginzburg
and
A. S.
Shalin
,
Light: Science and Applications
6
,
e16258
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.