Structured environment controls dynamics of light-matter interaction processes via modified local density of electromagnetic states. In typical scenarios, where nanosecond-scale fluorescent processes are involved, mechanical conformational changes of the environment during the interaction processes can be safely neglected. However, slow decaying phosphorescent complexes (e.g. lanthanides) can efficiently probe micro- and millisecond scale motion via near-field interactions with nearby structures. As the result, lifetime statistics can inherit information about nano-scale mechanical motion. Here we study light-matter interaction dynamics of phosphorescent dyes, diffusing in a proximity of a plasmonic nanoantenna. The interplay between time-varying Purcell enhancement and stochastic motion of molecules is considered via a modified diffusion equation, and collective decay phenomena is analyzed. Fluid properties, such as local temperature and diffusivity, are mapped on phosphorescent lifetime distribution and then extracted with the help of inverse Laplace transformation. The presented photonic platform enables performing contactless all-optical thermometry and diffusion measurements, paving a way for a range of possible applications. In particular, detailed studies of nanofluidic processes in lab-on-a-chip devices, challenging for analysis with other optical methods, can be performed with time-dependent phosphorescence.

1.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
, 2nd ed. (
Cambridge University Press
,
2012
).
2.
K. V.
Baryshnikova
,
A.
Novitsky
,
A. B.
Evlyukhin
, and
A. S.
Shalin
,
J. Opt. Soc. Am. B
34
,
D36
(
2017
).
3.
P. D.
Terekhov
,
V. E.
Babicheva
,
K. V.
Baryshnikova
,
A. S.
Shalin
,
A.
Karabchevsky
, and
A. B.
Evlyukhin
,
Phys. Rev. B
99
,
045424
(
2019
).
4.
E. A.
Gurvitz
,
K. S.
Ladutenko
,
P. A.
Dergachev
,
A. B.
Evlyukhin
,
A. E.
Miroshnichenko
, and
A. S.
Shalin
,
Laser Photonics Rev.
13
,
1800266
(
2019
).
5.
H. K.
Shamkhi
,
K. V.
Baryshnikova
,
A.
Sayanskiy
,
P.
Kapitanova
,
P. D.
Terekhov
,
P.
Belov
,
A.
Karabchevsky
,
A. B.
Evlyukhin
,
Y.
Kivshar
, and
A. S.
Shalin
,
Phys. Rev. Lett.
122
,
193905
(
2019
).
6.
K.
Baryshnikova
,
D.
Filonov
,
C.
Simovski
,
A.
Evlyukhin
,
A.
Kadochkin
,
E.
Nenasheva
,
P.
Ginzburg
, and
A. S.
Shalin
,
Phys. Rev. B
98
,
165419
(
2018
).
7.
D.
Zhigunov
,
A.B.
Evlyukhin
,
A.S.
Shalin
,
U.
Zywietz
, and
B.N.
Chichkov
,
ACS Photonics
,
5
(
3
),
977
, (
2018
).
8.
L.
Yue
,
O.
Minin
,
Z.
Wang
,
J.
Monks
,
A.
Shalin
,
I.
Minin
,
Optics Letters
,
43
,
4
, (
2018
).
9.
A.
Ivinskaya
,
N.
Kostina
,
A.
Proskurin
,
M.I.
Petrov
,
A.A.
Bogdanov
,
S.
Sukhov
,
A.V.
Krasavin
,
A.
Karabchevsky
,
A.S.
Shalin
, and
P.
Ginzburg
,
ACS Photonics
,
5
(
11
),
4371
4377
, (
2018
).
10.
N.
Kostina
,
M.
Petrov
,
A.
Ivinskaya
,
S.
Sukhov
,
A.
Bogdanov
,
I.
Toftul
,
M.
Nieto-Vesperinas
,
P.
Ginzburg
, and
A.S.
Shalin
,
Phys. Rev. B, B
99
,
125416
, (
2019
).
11.
N.A.
Kostina
,
D.A.
Kislov
,
A.N.
Ivinskaya
,
A.
Proskurin
,
D.N.
Redka
,
A.
Novitsky
,
P.
Ginzburg
, and
A. S.
Shalin
,
ACS Photonics
,
7
,
2
,
425
433
, (
2020
).
12.
A.S.
Ang
,
A.
Karabchevsky
,
I.V.
Minin
,
O.V.
Minin
,
S.V.
Sukhov
,
A.S.
Shalin
,
Sci.Reports
,
8
,
2029
, (
2018
).
13.
L.
Novotny
and
N.
Van Hulst
,
Nat. Photonics
5
,
83
(
2011
).
14.
M. G.
Kucherenko
and
D. A.
Kislov
,
J. Photochem. Photobiol. A Chem.
354
,
25
(
2018
).
15.
S. V.
Izmodenova
,
D. A.
Kislov
, and
M. G.
Kucherenko
,
Colloid J.
76
,
683
(
2014
).
16.
D. A.
Kislov
and
M. G.
Kucherenko
,
Opt. Spectrosc
. (
English Transl. Opt. i Spektrosk
.
117
,
784
(
2014
).
17.
A. S.
Kadochkin
,
I. I.
Shishkin
,
A. S.
Shalin
, and
P.
Ginzburg
,
Laser Photonics Rev.
12
,
1800042
(
2018
).
18.
S. V.
Gaponenko
,
P. M.
Adam
,
D. V.
Guzatov
, and
A. O.
Muravitskaya
,
Sci. Rep.
9
, (
2019
).
19.
20.
P.
Ginzburg
,
D. J.
Roth
,
M. E.
Nasir
,
P.
Segovia
,
A. V.
Krasavin
,
J.
Levitt
,
L. M.
Hirvonen
,
B.
Wells
,
K.
Suhling
,
D.
Richards
,
V. A.
Podolskiy
, and
A. V.
Zayats
,
Light Sci. Appl.
6
,
e16273
(
2017
).
21.
D.
Kislov
,
D.
Novitsky
,
A.
Kadochkin
,
D.
Redka
,
A.S.
Shalin
,
P.
Ginzburg
,
Phys.Rev.B
,
101
,
035420
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.