Optical spectra of semiconductor quantum wells driven by an off-resonant oscillating field are studied theoretically. Due to the dynamical stabilization effect, the field induces the quasi-stationary electron states confined at repulsive scatterers and immersed into the continuum of states of conduction electrons. As a result, the Fano resonances in the spectra of interband optical transitions appear near the energies of the quasi-stationary states.

The original version of this article supplied to AIP Publishing contains an error in equation (4) which is crucially important for understanding the present research as a whole. An updated version of this article was published on 11 January 2021.

1.
N.
Goldman
and
J.
Dalibard
, “
Periodically driven quantum systems: effective hamiltonians and engineered gauge fields
,”
Physical review X
4
,
031027
(
2014
).
2.
M.
Bukov
,
L.
D'Alessio
, and
A.
Polkovnikov
, “
Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering
,”
Advances in Physics
64
,
139
226
(
2015
).
3.
F.
Casas
,
J.
Oteo
, and
J.
Ros
, “
Floquet theory: exponential perturbative treatment
,”
Journal of Physics A: Mathematical and General
34
,
3379
(
2001
).
4.
A.
Eckardt
and
E.
Anisimovas
, “
High-frequency approximation for periodically driven quantum systems from a floquet-space perspective
,”
New journal of physics
17
,
093039
(
2015
).
5.
S.
Rahav
,
I.
Gilary
, and
S.
Fishman
, “
Effective hamiltonians for periodically driven systems
,”
Physical Review A
68
,
013820
(
2003
).
6.
M.
Holthaus
, “
Floquet engineering with quasienergy bands of periodically driven optical lattices
,”
Journal of Physics B: Atomic, Molecular and Optical Physics
49
,
013001
(
2015
).
7.
D.
Basov
,
R.
Averitt
, and
D.
Hsieh
, “
Towards properties on demand in quantum materials
,”
Nature materials
16
,
1077
1088
(
2017
).
8.
M.
Vogl
,
P.
Laurell
,
A. D.
Barr
, and
G. A.
Fiete
, “
Flow equation approach to periodically driven quantum systems
,”
Physical Review X
9
,
021037
(
2019
).
9.
M.
Vogl
,
M.
Rodriguez-Vega
, and
G. A.
Fiete
, “
Effective floquet hamiltonian in the low-frequency regime
,”
Physical Review B
101
,
024303
(
2020
).
10.
O.
Kibis
, “
Dissipationless electron transport in photon-dressed nanostructures
,”
Physical review letters
107
,
106802
(
2011
).
11.
K.
Koshelev
,
V. Y.
Kachorovskii
, and
M.
Titov
, “
Resonant inverse faraday effect in nanorings
,”
Physical Review B
92
,
235426
(
2015
).
12.
V.
Kozin
,
I.
Iorsh
,
O.
Kibis
, and
I.
Shelykh
, “
Quantum ring with the rashba spin-orbit interaction in the regime of strong light-matter coupling
,”
Physical Review B
97
,
155434
(
2018
).
13.
V.
Kozin
,
I.
Iorsh
,
O.
Kibis
, and
I.
Shelykh
, “
Periodic array of quantum rings strongly coupled to circularly polarized light as a topological insulator
,”
Physical Review B
97
,
035416
(
2018
).
14.
C.
Yin
,
N.
Tang
,
S.
Zhang
,
J.
Duan
,
F.
Xu
,
J.
Song
,
F.
Mei
,
X.
Wang
,
B.
Shen
,
Y.
Chen
, et al, “
Observation of the photoinduced anomalous hall effect in gan-based heterostructures
,”
Applied Physics Letters
98
,
122104
(
2011
).
15.
S.
Morina
,
O. V.
Kibis
,
A.
Pervishko
, and
I. A.
Shelykh
, “
Transport properties of a two-dimensional electron gas dressed by light
,”
Physical Review B
91
,
155312
(
2015
).
16.
A.
Pervishko
,
O. V.
Kibis
,
S.
Morina
, and
I. A.
Shelykh
, “
Control of spin dynamics in a two-dimensional electron gas by electromagnetic dressing
,”
Physical Review B
92
,
205403
(
2015
).
17.
K.
Dini
,
O.
Kibis
, and
I.
Shelykh
, “
Magnetic properties of a two-dimensional electron gas strongly coupled to light
,”
Physical Review B
93
,
235411
(
2016
).
18.
H.
Avetissian
and
G.
Mkrtchian
, “
Nonlinear response of the quantum hall system to a strong electromagnetic radiation
,”
Physics Letters A
380
,
3924
3927
(
2016
).
19.
N. H.
Lindner
,
G.
Refael
, and
V.
Galitski
, “
Floquet topological insulator in semiconductor quantum wells
,”
Nature Physics
7
,
490
495
(
2011
).
20.
M. C.
Rechtsman
,
J. M.
Zeuner
,
Y.
Plotnik
,
Y.
Lumer
,
D.
Podolsky
,
F.
Dreisow
,
S.
Nolte
,
M.
Segev
, and
A.
Szameit
, “
Photonic floquet topological insulators
,”
Nature
496
,
196
200
(
2013
).
21.
Y.
Wang
,
H.
Steinberg
,
P.
Jarillo-Herrero
, and
N.
Gedik
, “
Observation of floquet-bloch states on the surface of a topological insulator
,”
Science
342
,
453
457
(
2013
).
22.
L. F.
Torres
,
P. M.
Perez-Piskunow
,
C. A.
Balseiro
, and
G.
Usaj
, “
Multiterminal conductance of a floquet topological insulator
,”
Physical review letters
113
,
266801
(
2014
).
23.
G.
Usaj
,
P. M.
Perez-Piskunow
,
L. F.
Torres
, and
C. A.
Balseiro
, “
Irradiated graphene as a tunable floquet topological insulator
,”
Physical Review B
90
,
115423
(
2014
).
24.
H.
Dehghani
,
T.
Oka
, and
A.
Mitra
, “
Out-of-equilibrium electrons and the hall conductance of a floquet topological insulator
,”
Physical Review B
91
,
155422
(
2015
).
25.
H. L.
Calvo
,
L. F.
Torres
,
P. M.
Perez-Piskunow
,
C. A.
Balseiro
, and
G.
Usaj
, “
Floquet interface states in illuminated three-dimensional topological insulators
,”
Physical Review B
91
,
241404
(
2015
).
26.
T.
Morimoto
and
N.
Nagaosa
, “
Topological nature of nonlinear optical effects in solids
,”
Science advances
2
,
e1501524
(
2016
).
27.
T.
Mikami
,
S.
Kitamura
,
K.
Yasuda
,
N.
Tsuji
,
T.
Oka
, and
H.
Aoki
, “
Brillouin-wigner theory for high-frequency expansion in periodically driven systems: Application to floquet topological insulators
,”
Physical Review B
93
,
144307
(
2016
).
28.
O.
Kyriienko
,
O.
Kibis
, and
I.
Shelykh
, “
Optically induced topological states on the surface of mercury telluride
,”
Physical Review B
99
,
115411
(
2019
).
29.
T.
Oka
and
H.
Aoki
, “
Photovoltaic hall effect in graphene
,”
Physical Review B
79
,
081406
(
2009
).
30.
O.
Kibis
, “
Metal-insulator transition in graphene induced by circularly polarized photons
,”
Physical Review B
81
,
165433
(
2010
).
31.
S.
Syzranov
,
Y. I.
Rodionov
,
K.
Kugel
, and
F.
Nori
, “
Strongly anisotropic dirac quasiparticles in irradiated graphene
,”
Physical Review B
88
,
241112
(
2013
).
32.
M.
Glazov
and
S.
Ganichev
, “
High frequency electric field induced nonlinear effects in graphene
,”
Physics Reports
535
,
101
138
(
2014
).
33.
P. M.
Perez-Piskunow
,
G.
Usaj
,
C. A.
Balseiro
, and
L. F.
Torres
, “
Floquet chiral edge states in graphene
,”
Physical Review B
89
,
121401
(
2014
).
34.
M.
Sentef
,
M.
Claassen
,
A.
Kemper
,
B.
Moritz
,
T.
Oka
,
J.
Freericks
, and
T.
Devereaux
, “
Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene
,”
Nature communications
6
,
1
8
(
2015
).
35.
E. J.
Sie
,
A. J.
Frenzel
,
Y.-H.
Lee
,
J.
Kong
, and
N.
Gedik
, “
Intervalley biexcitons and many-body effects in monolayer mos 2
,”
Physical Review B
92
,
125417
(
2015
).
36.
O.
Kibis
,
S.
Morina
,
K.
Dini
, and
I.
Shelykh
, “
Magnetoelectronic properties of graphene dressed by a high-frequency field
,”
Physical Review B
93
,
115420
(
2016
).
37.
O.
Kibis
,
K.
Dini
,
I.
Iorsh
, and
I.
Shelykh
, “
All-optical band engineering of gapped dirac materials
,”
Physical Review B
95
,
125401
(
2017
).
38.
I.
Iorsh
,
K.
Dini
,
O.
Kibis
, and
I.
Shelykh
, “
Optically induced lifshitz transition in bilayer graphene
,”
Physical Review B
96
,
155432
(
2017
).
39.
S.
Sato
,
J.
McIver
,
M.
Nuske
,
P.
Tang
,
G.
Jotzu
,
B.
Schulte
,
H.
Hübener
,
U.
De Giovannini
,
L.
Mathey
,
M.
Sentef
, et al, “
Microscopic theory for the light-induced anomalous hall effect in graphene
,”
Physical Review B
99
,
214302
(
2019
).
40.
P.
Seifert
,
F.
Sigger
,
J.
Kiemle
,
K.
Watanabe
,
T.
Taniguchi
,
C.
Kastl
,
U.
Wurstbauer
, and
A.
Holleitner
, “
In-plane anisotropy of the photon-helicity induced linear hall effect in few-layer wte 2
,”
Physical Review B
99
,
161403
(
2019
).
41.
A.
Iurov
,
G.
Gumbs
, and
D.
Huang
, “
Peculiar electronic states, symmetries, and berry phases in irradiated α-t 3 materials
,”
Physical Review B
99
,
205135
(
2019
).
42.
A.
Iurov
,
L.
Zhemchuzhna
,
D.
Dahal
,
G.
Gumbs
, and
D.
Huang
, “
Quantum-statistical theory for laser-tuned transport and optical conductivities of dressed electrons in α-t 3 materials
,”
Physical Review B
101
,
035129
(
2020
).
43.
J. W.
McIver
,
B.
Schulte
,
F.-U.
Stein
,
T.
Matsuyama
,
G.
Jotzu
,
G.
Meier
, and
A.
Cavalleri
, “
Light-induced anomalous hall effect in graphene
,”
Nature physics
16
,
38
41
(
2020
).
44.
O.
Kibis
, “
Electron pairing in nanostructures driven by an oscillating field
,”
Physical Review B
99
,
235416
(
2019
).
45.
L.
Landau
and
E.
Lifshitz
, “
The classical theory of fields
,” (
2000
).
46.
U.
Fano
, “
Effects of configuration interaction on intensities and phase shifts
,”
Physical Review
124
,
1866
(
1961
).
47.
W. C.
Henneberger
, “
Perturbation method for atoms in intense light beams
,”
Physical Review Letters
21
,
838
(
1968
).
48.
T.
Ando
,
A. B.
Fowler
, and
F.
Stern
, “
Electronic properties of two-dimensional systems
,”
Reviews of Modern Physics
54
,
437
(
1982
).
49.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum mechanics: non-relativistic theory
, Vol.
3
(
Elsevier
,
2013
).
50.
J.
Bardeen
, “
Tunnelling from a many-particle point of view
,”
Physical Review Letters
6
,
57
(
1961
).
This content is only available via PDF.
You do not currently have access to this content.