Strain engineering is a powerful tool for tuning physical properties of 2D materials, including thin layers of transition metal dichalcogenides (TMDs). Here we study experimentally the achievable local excitonic spectral shifts through a combination of a controllable deformation experiment with in-situ optical characterization, rigorous numerical simulations, and careful account for the optical resolution of the setup. We extract the spatial profiles of strain-induced exciton energy shift depending on the depth of the local indentation of a 2D semiconductor performed by an AFM tip and unambiguously detect the flake rupture. This allows us to systematically investigate the optomechanical properties of TMD monolayers at each indentation depth. Our approach is a powerful tool for in-situ characterization of local optomechanical properties of two-dimensional semiconductors with a strong excitonic response.

1.
S.
Deng
,
A. V.
Sumant
, and
V.
Berry
,
“Strain engineering in two-dimensional nanomaterials beyond graphene
,”
Nano Today
22
,
14
35
(
2018
).
2.
S.
Bertolazzi
,
J.
Brivio
, and
A.
Kis
,
“Stretching and breaking of ultrathin mos2
,”
ACS nano
5
,
9703
9709
(
2011
).
3.
J.
Feng
,
X.
Qian
,
C.-W.
Huang
, and
J.
Li
,
“Strain-engineered artificial atom as a broad-spectrum solar energy funnel
,”
Nature Photonics
6
,
866
(
2012
).
4.
S.
Kumar
,
A.
Kaczmarczyk
, and
B. D.
Gerardot
,
“Strain-induced spatial and spectral isolation of quantum emitters in mono-and bilayer wse2
,”
Nano letters
15
,
7567
7573
(
2015
).
5.
G. D.
Shepard
,
O. A.
Ajayi
,
X.
Li
,
X.
Zhu
,
J.
Hone
, and
S.
Strauf
,
“Nanobubble induced formation of quantum emitters in monolayer semiconductors
,”
2D Materials
4
,
021019
(
2017
).
6.
M. R.
Rosenberger
,
C. K.
Dass
,
H.-J.
Chuang
,
S. V.
Sivaram
,
K. M.
McCreary
,
J. R.
Hendrickson
, and
B. T.
Jonker
,
“Quantum calligraphy: Writing single-photon emitters in a two-dimensional materials platform
,”
ACS nano
13
,
904
912
(
2019
).
7.
C.
Chakraborty
,
L.
Kinnischtzke
,
K. M.
Goodfellow
,
R.
Beams
, and
A. N.
Vamivakas
,
“Voltage-controlled quantum light from an atomically thin semiconductor
,”
Nature nanotechnology
10
,
507
(
2015
).
8.
Y.-M.
He
,
G.
Clark
,
J. R.
Schaibley
,
Y.
He
,
M.-C.
Chen
,
Y.-J.
Wei
,
X.
Ding
,
Q.
Zhang
,
W.
Yao
,
X.
Xu
, et al,
“Single quantum emitters in monolayer semiconductors
,”
Nature nanotechnology
10
,
497
(
2015
).
9.
M.
Koperski
,
K.
Nogajewski
,
A.
Arora
,
V.
Cherkez
,
P.
Mallet
,
J.-Y.
Veuillen
,
J.
Marcus
,
P.
Kossacki
, and
M.
Potemski
,
“Single photon emitters in exfoliated wse 2 structures
,”
Nature nanotechnology
10
,
503
(
2015
).
10.
A.
Srivastava
,
M.
Sidler
,
A. V.
Allain
,
D. S.
Lembke
,
A.
Kis
, and
A.
Imamoğlu
,
“Optically active quantum dots in monolayer wse 2
,”
Nature nanotechnology
10
,
491
(
2015
).
11.
F.
Benimetskiy
,
V.
Sharov
,
P.
Alekseev
,
V.
Kravtsov
,
K.
Agapev
,
I.
Sinev
,
I.
Mukhin
,
A.
Catanzaro
,
R.
Polozkov
,
E.
Alexeev
, et al,
“Measurement of local optomechanical properties of a direct bandgap 2d semiconductor
,”
APL Materials
7
,
101126
(
2019
).
12.
J. O.
Island
,
A.
Kuc
,
E. H.
Diependaal
,
R.
Bratschitsch
,
H. S. J.
van der Zant
,
T.
Heine
, and
A.
Castellanos-Gomez
,
“Precise and reversible band gap tuning in single-layer mose2 by uniaxial strain
,”
Nanoscale
8
,
2589
2593
(
2016
).
13.
J.
Liang
,
J.
Zhang
,
Z.
Li
,
H.
Hong
,
J.
Wang
,
Z.
Zhang
,
X.
Zhou
,
R.
Qiao
,
J.
Xu
,
P.
Gao
, et al,
“Monitoring local strain vector in atomic-layered mose2 by second-harmonic generation
,”
Nano letters
17
,
7539
7543
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.