An investigation is carried out to determine the effect of three types of boundary conditions as well as variation in density and viscosity with temperature on electro-thermal-convection (ETC) in a dielectric fluid-saturated porous layer. A Galerkin-type of weighted residual method (WRM) is used to extract the eigenvalues. The electrohydrodynamic boundary conditions are included namely, (i) lower and upper boundaries rigid (R-R), (ii) lower-rigid and upper-free boundaries (R-F), and (iii) lower and upper boundaries free (F-F). The governing parameters of the problem are the Biot number Bi, the ratio of viscosity Λ, the porous parameter Da− 1, the temperature dependent viscosity η and thermal expansion co-efficient increases is to delay the onset, while strength electric Rayleigh number Re increases is to destabilize the system. The electric force Rec , and buoyancy force Rtc adjunct with each other and always found Rec < Rtc. For stress free surface condition advances the ETC compared at rigid surfaces. In limiting cases, some results published previously are recovered from our results.

1.
A.M.
Thoma
and
M.
Morari
,
Control of fluid flow
,
Berlin Heidelberg
:
Springer-Verlag
(
2006
).
2.
J.N.E.
Larsen
,
H.
Ran
and
Y.
Zhang
,
Electrohydrodynamic cooled laptop, Semiconductor Thermal Measurement and Management Symposium
,
25th Annual IEEE semiconductor thermal measurement and management symposium
(
2009
).
3.
S.
Tassavur
,
Super Cool ‘EHD Pump’ by NASA Cools Devices in Space
(
2011
).
4.
M.
Takashima
and
H.
Hamabata
,
The stability of natural convection in a vertical layer of dielectric fluid in the presence of a horizontal electric field
,
J Phys Soc Japan.
,
53
,
1728
1736
(
1984
).
5.
P.J.
Stiles
,
Electrothermal convection in dielectric liquids
,
Chem Phys Lett.
,
179
,
311
315
(
1991
).
6.
T.
Maekawa
,
K.
Abe
and
I.
Tanasawa
,
Onset of natural convection under an electric field
,
Int J Heat Mass Trans.
,
35
,
613
621
(
1992
).
7.
P.J.
Stiles
,
F.
Lin
and
P.J.
Blennerhassett
,
Convective heat transfer through polarized dielectric liquids
,
Phys Fluids
,
5
,
3273
3279
(
1993
).
8.
B.L.
Smorodin
and
M.G.
Velard
,
On the parametric excitation of electro thermal instability in a dielectric liquid layer using an alternating electric field
,
J Electrost.
,
50
,
205
226
(
2001
).
9.
I.S.
Shivakumara
,
M.S.
Nagashree
and
K.
Hemalatha
,
Electrothermoconvective instability in a heat generating dielectric fluid layer
,
Int Comm Heat Mass Trans.
,
34
,
1041
1047
(
2007
).
10.
P.G.
Siddheshwar
and
D.
Radhakrishna
,
Linear and nonlinear electroconvection under AC electric field
,
Common Nonlinear Sci Numer Simulat.
,
17
,
2883
2895
(
2011
).
11.
I.S.
Shivakumara
,
Jinho
Lee
,
K.
Vejravelu
and
M.
Akkanagamma
,
Electrothermal convection in a rotating dielectric fluid layer: effect of velocity and temperature boundary conditions
,
Int J Heat Mass Trans.
,
55
,
2984
2991
(
2012
).
12.
I.S.
Shivakumara
,
M.
Akkanagamma
and
Chiu-On
Ng
,
Electrohydrodynamic instability of a rotating couple stress dielectric fluid layer
,
Int J Heat Mass Trans.
,
62
,
761
771
(
2013
).
13.
R.
Ashwini
,
C.E.
Nanjundappa
and
I.S.
Shivakumara
,
Penetrative electrothermal-convection in a dielectric fluid saturated porous layer via internal heating: Effect of Boundary conditions
,
Int J Appl Compu Math.
,
5
,
1
17
(
2019
).
14.
G.
Veronis
,
Penetrative convection
,
J. V. Astrophys.
,
137
,
641
663
(
1963
).
15.
J.C.
Legros
,
D.
Londree
and
G.
Thomaes
,
Bénard problem in water near 4°C, Physica.
12
,
410
415
(
1974
).
16.
G.P.
Merker
,
P.
Wass
and
U.
Grigull
,
Onset of convection in a horizontal water layer with maximum density effects
,
Int J Heat Mass Trans.
,
22
,
505
515
(
1979
).
17.
J.
Guo
and
P.
Kaloni
,
Double-diffusive convection in a porous medium, nonlinear stability, Brinkman effect
.
Studies in Applied Mathematics
,
94
,
341
358
(
1995
).
18.
A.
Castellanos
(Eds.),
Electrohydrodynamics
,
Springer
,
New York
(
1998
).
19.
T. B.
Jones
,
Electrohydrodynamically Enhanced Heat Transfer in Liquids - A review, Adv. Heat Transfer
14
,
107
148
(
1978
).
20.
A.
Castellanos
,
Entropy Production and the Temperature Equation in Electrohydrodynamics, IEEE Trans. Dielect. Electr. Insul.
,
10
, no.
1
,
22
26
(
2003
).
21.
L.D.
Landau
and
E.M.
Lifshitz
,
Electrohydrodynamics of Continuous Media
,
Oxford
,
New York
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.