The theoretical analysis is carried out for the problem of ferro-thermal-convection (FTC) onset in a micropolar ferrofluid-saturated porous layer submitted to a Robin type of thermal boundary condition. The boundaries are considered to be lower-rigid at isothermal, while upper-rigid at Robin-type of thermal boundary condition. The higher order Galerkin-type of weighted residual method is used to obtain the eigenvalue. The behavior of the critical stability parameters is discussed in various dimensionless physical parameters akin to the magnetic number, non-linearity of magnetization parameter, Biot number, coupling parameter, Darcy number, spin diffusion parameter and heat conduction of micropolar parameter. The result shows that the onset of thermomagnetic convection is postponed with an increase in N1, Bi and N5 but convection is accelerated with an increase in M1, M3 and N3. Furthermore, some known results are compared with existing results.

1.
Tero
Tynjala
,
“Theoretical and numerical studies on thermoamgnetic convection of magnetic fluids
”, Thesis for the degree of Doctor of Science (Technology),
University of Technology
,
Lappeenranta, Finland
, on the 14th of October,
2005
.
2.
S.
Odenbach
,
Microgravity Experiments on Thermomagnetic Convection in Magnetic Fluid
,
J. Magn.Magn. Mater.
,
149
,
155
157
(
1995
).
3.
Pei
Bian
and
Thomas J.
McCarthy
,
Polymerization of Monomer-Based Ferrofluids
,
Langmuir letter American Chemical Society
,
26
(
9
),
6145
6148
(
2010
).
4.
R.Y.
Hong
,
S.Z.
Zhang
,
Y.P.
Han
,
H.Z.
Li
,
J.
Ding
and
Y.
Zheng
,
Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids, Powder Technology
,
170
,
1
11
(
2006
).
5.
B.A.
Finlayson
,
Convective instability of ferromagnetic fluids
,
J. Fluid Dyn.
,
40
,
753
767
(
1970
).
6.
K.
Gotoh
and
M.
Yamada
,
Thermal convection in a horizontal layer of magnetic Fluids
,
J. Phy. Soc, Japan
,
51
,
3042
3048
(
1982
).
7.
P.J.
Blennerhassett
,
F.
Lin
and
P.J.
Stiles
,
Heat Transfer through Strongly Magnetized Ferrofluids, Proceedings of the Royal Society, London
,
A Mathematical, Physical & Engineering Science
,
433
,
615
,
177
(
1991
).
8.
P.J.
Stiles
,
F.
Lin
and
P.J.
Blennerhassett
,
Heat transfer through weakly magnetized Ferrofluids
,
J. Colloidal and Interface Sci.
,
511
,
95
101
(
1992
).
9.
M.I.
Shliomis
,
Convective instability of magnetized ferrofluids: influence of magneto phoresis and Soret effect Thermal Non–Equilibrium
.
Phenomena, Fluid Mixtures
,
584
,
355
371
(
2002
).
10.
M.I.
Shliomis
and
B.L.
Smorodin
,
Convective instability of magnetized ferrofluid
,
J. Magn. Magn. Mater.
,
252
,
197
202
(
2002
).
11.
S.
Odenbach
,
Recent progress in magnetic fluid research
,
J. Phy. Condensation Matter
,
16
,
1135
1150
(
2004
).
12.
Sunil
and
A.
Mahjan
,
A Nonlinear Stability Analysis for Magnetized Ferrofluid Heated from Below, roceedings of the Royal Society, London
,
A Mathematical, Physical & Engineering Science
,
464
,
83
98
(
2008
).
13.
C.E.
Nanjundappa
and
I.S.
Shivakumara
,
Effect of velocity and temperature boundary conditions on convective instability in a ferrofluid layer
,
ASME J. Heat Transfer
,
130
,
104502
1
-104502–5 (
2008
).
14.
J.
Singh
and
R.
Bajaj
,
Temperature modulation in ferrofluid convection
,
J. Phys. of Fluids
,
21
,
064105
1
–64105–12 (
2009
).
15.
I.S.
Shivakumara
,
Jinho
Lee
, and
C.E.
Nanjundappa
,
Onset of thermogravitational convection in a ferrofluid layer with temperature dependent viscosity
,
ASME J. Heat Transfer
,
134
,
012501
1
–012501–7 (
2012
).
16.
R.E.
Rosensweig
,
Ferrohydrodynamics
, (
Cambridge University Press
,
London
,
1985
).
17.
A.C.
Eringen
,
Simple Microfluids
,
Int. J. Eng. Sci.
,
2
,
205
217
(
1964
).
18.
G.
Lebon
and
C.
Perez-Garcia
,
Convective instability of a Micropolar Fluid Layer by the method of energy
,
Int. J. Eng. Sci.
,
19
,
1321
1329
(
1981
).
19.
L.E.
Payne
and
B.
Straughan
,
Critical Rayleigh Numbers for Oscillatory and Non-Linear Convection in an Iso-tropic Thermomicropolar Fluid
,
Int. J. Eng. Sci.
,
27
,
827
836
(
1989
).
20.
Smys
,
S.
,
Joy
Chen
, and
Subarna
Shakya
, eds. "Preface: 2nd International Conference on Inventive Research in Material Science and Technology (ICIRMCT 2019)." In
AIP Conference Proceedings
, Vol.
2087
, no.
1
, p.
010001
.
AIP Publishing LLC
,
2019
.
21.
P.G.
Siddheshwar
and
S.
Pranesh
,
Effect of a Non-Uni-form Basic Temperature Gradient on Rayleigh-Benard Convection in a micropolar fluid
,
Int. J. Eng. Sci.
,
36
,
1183
1196
(
1998
).
22.
M.
Zahn
and
D.R.
Greer
,
Ferro hydrodynamics pumping in spatially uniform sinusoidally time varying magnetic fields
,
J. Magn. Magn. Mater.
,
149
,
165
173
(
1995
).
23.
A.
Abraham
,
Rayleigh–Bénard convection in a micropolar magnetic fluids
,
International Journal of Engineering Scienc Int. J. Eng. Sci.
,
40
,
449
460
(
2002
).
24.
Sunil
,
P.
Chand
,
P.K.
Bharti
and
Amith
Mahajan
,
Thermal convection a micropolar ferrofluid in the presence of rotation
,
J. Magn. Magn. Mater.
,
320
,
316
324
(
2008
).
25.
C.E.
Nanjundappa
,
I.S.
Shivakumara
and
K.
Srikumar
,
The onset of ferromagnetic convection in micropolar ferromagnetic fluid layer heated from below
,
J. Electromagnetic Analysis and App.
,
5
,
120
133
(
2013
).
26.
S.
Chandrashekar
, Hydrodynamic and Hydromagnetic Stability,
Oxford
,
Clarendon Press
.
27.
E.M.
Sparrow
,
R.J.
Goldstein
and
U.K.
Jonsson
,
Thermal Instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profiles
,
J. Fluid Mech.
,
18
,
513
528
(
1964
).
28.
G.
Lebon
and
A.
Cloot
,
A thermodynamical modeling of fluid flows through porous media: Application to natural convection
,
Int. J. Heat and mass Transfer
,
29
(
3
),
381
390
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.