This paper theoretically investigates the effects of different velocity, temperature and magnetic potential boundary conditions on the linear stability criteria of ferro-thermal-convection (FTC) in a layer of porous medium with uniformly distributed internal heat sources. The lower and upper boundaries are considered to be either rigid or free. At the lower boundary a thermally perfect insulator condition is used and at the upper boundary a general thermal boundary condition is appealed. The principle of exchange of stabilities is valid and a Galerkin technique based on the weighted residual method (WRM) has been used in general to extract the critical eigenvalue which is either the gravity thermal Rayleigh number Rt or the magnetic thermal Rayleigh number Rm. When both boundaries are insulating the expression for the critical eigenvalue is obtained using a regular perturbation technique. It is found that the critical Rt or Rm are high for rigid-rigid (R-R) boundaries and the least for free-free (F-F) boundaries. The influence of inverse Darcy number (Da−1), Biot number (Bi) and the Brinkman number (Λ) is to delay, while that of internal heating (N s) and the non-linearity of fluid magnetization (M3) is to speed up the onset of FTC in a porous medium. The previously published results are recovered as particular cases from the present study.

1.
R.E.
Rosensweig
,
Ferrohydrodynamics
, (
Cambridge University Press
,
London
,
1985
).
2.
B.A.
Finlayson
,
Convective instability of ferromagnetic fluids
,
J. Fluid Mech.
,
40
,
753
767
(
1970
).
3.
K.
Gotoh
and
M.
Yamada
,
Thermal convection in a horizontal layer of magnetic fluids
,
J. Phy. Soc, Japan
,
51
,
3042
3048
(
1982
).
4.
P.J.
Stiles
,
F.
Lin
and
P.J.
Blennerhassett
,
Heat transfer through weakly magnetized Ferrofluids
,
J. Coll. and Int. Sci.
,
151
,
95
101
(
1992
).
5.
S.
Venkatasubramanian
and
P.N.
Kaloni
,
Effects of rotation on the thermoconvective instability of a horizontal layer of ferrofluids
,
Int. J. of Eng. Sci.
,
32
,
237
256
(
1994
).
6.
G.K.
Auernhammer
and
H.R.
Brand
,
Thermal convection in a rotating layer of a magnetic fluid
,
Eur. Phys J. B
,
16
,
157
168
(
2000
).
7.
P.N.
Kaloni
and
J.X.
Lou
,
Convective instability of magnetic fluids under alternating magnetic fields
,
J. American Physical Society
,
71
,
06631
12
(
2005
).
8.
A.
Jafari
,
T.
Tynjala
,
S.M.
Mousavi
and
P.
Sarkomaa
,
Simulation of heat transfer in a ferrofluid using computational fluid dynamics technique
,
Int. J. Heat and Fluid Flow
,
29
,
1197
1202
(
2008
).
9.
J.
Singh
and
R.
Bajaj
,
Convective instability in a ferrofluid layer with temperature-modulated rigid boundaries
,
J. Fluid Dyn. Res.
,
43
,
025502
26
(
2011
).
10.
J.
Singh
,
E.
Hines
and
D.
Iliescu
,
Global stability results in temperature modulated convection in ferrofluids
,
J. Appl. Math. sComp.
,
219
,
6204
6211
(
2013
).
11.
H.
Rahman
and
A.
Suslov
,
Thermomagnetic convection in a layer of ferrofluid placed in a uniform oblique external magnetic field
,
Cambridge University Press
,
764
,
316
348
(
2015
).
12.
M.
Sheikholeslami
,
M.M.
Rashidi
,
T.
Hayat
and
D.D.
Ganji
,
Free convection of magnetic nanofluid considering MFD viscosity effect
,
J. Molecular Liquids
,
218
,
393
399
(
2016
).
13.
R.
Nandal
and
A.
Mahajan
,
Linear and nonlinear stability analysis of a Horton-Rogers-Lapwood-problem with an internal heat source and Brinkman effects
,
Transp. Porous Media
,
117
,
261
280
(
2017
).
14.
A.
Mahajan
and
M.K.
Sharma
,
The onset of convection in a magnetic nanofluids layer with variable gravity effects
,
J. Appl. Math. Comp.
,
339
,
622
635
(
2018
).
15.
A.
Mahajan
and
M.K.
Sharma
,
Penetrative convection in magnetic nanofluids via internal heating
,
J. Phys. of Fluids
,
29
,
034101
13
(
2017
).
16.
S.E.
Borglin
,
J.
Mordis
, and
C.M.
Oldenburg
,
Experimental studies of the flow of ferrofluid in porous media
,
Transp. Porous Media
,
4
,
61
80
(
2000
).
17.
R.E.
Rosensweig
,
M.
Zahn
and
T.
Volger
, Stabilization of fluid penetration through a porous medium using magnetizable fluids. In
B.
Berkovsky
,
Thermomechanics of Magnetic Fluids
.
Hemisphere Washington
,
195
211
(
1978
).
18.
M.
Zahn
and
R.E.
Rosensweig
,
Stability of magnetic fluid penetration through a porous medium with uniform magnetic field oblique to the interface
,
IEEE Trans. Magn.
,
16
,
275
282
(
1980
).
19.
G.
Vaidyanathan
,
R.
Sekar
and
R.
Balasubramanian
,
Ferroconvective instability of fluids saturating a porous medium
,
Int. J. Eng. Sci.
,
29
,
1259
1267
(
1991
).
20.
Sunil and
A.
Mahajan
,
A nonlinear stability analysis for thermoconvective magnetized ferrofluid saturating a porous medium
,
Transp. Porous Media
,
76
,
327
343
(
2009
).
21.
C.E.
Nanjundappa
,
M.
Ravisha
,
J.
Lee
and
I.S.
Shivakumara
,
Penetrative ferroconvection in a porous layer
,
Int. J. Acta Mech.
,
216
,
243
257
(
2011
).
22.
C.E.
Nanjundappa
,
I.S.
Shivakumara
and
H.N.
Prakash
,
Penetrative ferroconvection via internal heating in a saturated porous layer with constant heat flux at the lower boundary
,
J. Magn. Magn. Mater.
,
324
,
1670
1678
(
2012
).
23.
A.
Mahajan
and
M.K.
Sharma
,
Convection in a magnetic nanofluid saturating a porous medium under the influence of a variable gravity field
,
Int. J. Eng. Sci. and Tech.
,
21
,
439
450
(
2018
).
24.
C.E.
Nanjundappa
,
I.S. Shivakumara and R. Arunkumar, Effect of cubic temperature profiles on ferroconvection in a Brinkman porous medium
,
J. Appl. Fluid Mech.
,
9
,
1955
1962
(
2016
).
25.
G.N.
Sekhar
and
N.
Rudraiah
,
Convection in magnetic fluid with internal heat generation
,
J. Heat Transfer
,
113
,
122
128
(
1991
).
26.
C.E.
Nanjundappa
,
I.S.
Shivakumara
,
Jinho
Lee
and
M.
Ravisha
,
The onset of Brinkman ferroconvection in an anisotropic porous medium
,
Int. J. Eng. Sci.
,
49
,
497
508
(
2011
).
27.
F.A.
Kulacki
and
R.J.
Goldstein
,
Hydrodynamic instability in fluid layers with uniform volumetric energy sources
,
Appl. Sci. Res.
,
31
,
81
109
(
1975
).
28.
E.M.
Sparrow
,
R.J.
Goldstein
and
V.K.
Jonson
,
Thermal instability in a horizontal fluid layer: effect of boundary conditions in a horizontal fluid layer effect of boundary conditions and non-linear temperature profiles
,
J. Fluid Mech.
,
18
,
513
528
(
1964
)
This content is only available via PDF.
You do not currently have access to this content.