64Cu is a cyclotron-produced radionuclide suitable for positron emission tomography (PET) and internal radiotherapy. We have been focused on 64Cu radioisotope due to its favorable nuclear characteristics (β+ emission, 18% and β emission, 39%). Moreover, the electron capture (43%) implies Auger electron emission with high linear energy transfer in the targeted cells. Also, the 12.7 hours half-life allows a good uptake and distribution of the radiopharmaceuticals to obtain qualitative images with high contrast. The production of no-carrier-added 64Cu via the 64Ni(p,n)64Cu nuclear reaction using a variable energy cyclotron (TR-19, ACSI, Canada) was studied in our work involving the implementation of a fully automated solid target irradiation and processing system. In this paper we report the validation of the process for the automated production and purification of 64Cu produced in a variable energy (14-19 MeV) cyclotron, using a commercially available automated solid target system (ALCEO, Comecer S.p.A, Italy), comprising modules for electrodeposition, pneumatic transfer, irradiation unit, dissolving and purification. The obtained 64CuCl2 solution complies with the requirements of a radiopharmaceutical for medical applications. The process is to be translated for production of other copper radioisotopes of medical interest.

1.
Jalilian
,
A. R.
,
Osso
Jr
, J., “
The current status and future of theranostic Copper-64 radiopharmaceuticals
”,
Iranian Journal of Nuclear Medicine
2017
,
25
(
1
),
1
10
3.
A. N.
Asabella
,
G. L.
Cascini
,
C.
Altini
,
D.
Paparella
,
A.
Notaristefano
,
G.
Rubini
, “
The copper radioisotopes: a systematic review with special interest to 64Cu
”,
BioMed Research. International
,
2014
,
1
9
4.
,
M.-M
,
Chisté
,
V
;
Dulieu
,
C.
,
Mougeot
,
X.
,
Chechev
,
V.
,
Kuzmenko
,
N.
,
Kondev
,
F.
,
Luca
,
A.
,
Galán
,
M.
,
Nichols
,
A. L.
,
Lee
,
K. B.
,
Arinc
,
A.
,
Pearce
,
A.
,
Huang
,
X.
,
Wang
,
B.
"Cu-64" (PDF). In Bé, M.-M. Table of radionuclides (Volume 6). Sèvres: (2006)
BIPM.
p.
13
. ISBN 978-92-822-2242-3.
5.
D. W.
McCarthy
,
R. E.
Shefer
,
R. E.
Klinkowstein
,
L. A.
Bass
,
W. H.
Margeneau
,
S.
Cutler
,
C. J.
Anderson
,
M. J.
Welch
,
Nucl. Med. Biol.
1997
,
24
,
35
43
6.
C.
Alliot
,
N.
Michel
,
A. C.
Bonraisin
,
V.
Bosse
,
J.
Laize
,
C.
Bourdeau
,
B. M.
Mokili
,
F.
Haddad
,
Radiochim. Acta
2011
,
99
,
627
630
7.
M.
Matarrese
,
P.
Bedeschi
,
R.
Scardaoni
,
F.
Sudati
,
A.
Savi
,
A.
Pepe
,
V.
Masiello
,
S.
Todde
,
L.
Gianolli
,
C.
Messa
,
F.
Fazio
,
Appl. Radiat. Isot.
2010
,
68
,
5
13
8.
D.
Niculae
,
S.
Ilie
,
R.
Leonte
,
L.
Chilug
,
L.
Craciun
,
Automated production and purification of copper medical radioisotopes in a variable energy cyclotron using solid targets,
Journal of Labelled Compounds and Radiopharmaceuticals
,
62
(
2019
) Suppl 1,
S301
S302
9.
R.
Leonte
,
D.
Niculae
,
L.
Craciun
,
G.
Cata-Danil
,
Medical radioisotopes production at TR-19 cyclotron from IFIN-HH
,
UPB Scientific Bulletin, Series A: Applied Mathematics and Physics
, vol.
79
, issue
1
(
2017
) pp.
223
236
This content is only available via PDF.
You do not currently have access to this content.