Large Eddy Simulation is a predictive technology that has the potential to revolutionise CFD. Significant effort is now being put into improving lower order models based on high fidelity data. The current work contrasts LES and RANS for a low Reynolds number ribbed channel flow relevant to turbine and electronics cooling. The anisotropy of turbulence is chosen as a starting point to compare RANS modelling deficiencies, and it is found that there are significant differences between the anisotropy predicted by RANS and LES. In the LES, a spreading shear layer introduces anisotropic content into the passage. Downstream of the rib, scouring eddies shed from the rib destroy the classical boundary layer flow. A machine learning classifier trained on a database of similar flows is used to predict the anisotropy in the ribbed passage. The classifier is shown to be capable of predicting many of the flow features identified in the LES, demonstrating the potential of such approaches for application to this category of flows.

1.
J.
Tyacke
and
P.
Tucker
,
Applied Mathematical Modelling
36
,
3112
3133
(
2012
).
2.
J.
Parry
,
“A Complete Guide To Enclosure Thermal Design … 14 Key Considerations
,”
Tech. Rep. (Mentor
,
2017
).
3.
S.
Patil
and
D.
Tafti
,
Journal of Turbomachinery
135
, p.
03100
6mar (
2013
).
4.
A.
Rozati
and
D. K.
Tafti
,
Journal of Turbomachinery
130
, p.
041015
(
2008
).
5.
P.
Martini
,
a.
Schulz
, and
H.-J.
Bauer
,
Journal of Turbomachinery
128
, p.
196
(
2006
).
6.
J.-C.
Han
,
The International Journal of Rotating Machinery
10
,
443
457nov
(
2004
).
7.
H.
Kikumoto
and
R.
Ooka
,
Journal of Wind Engineering and Industrial Aerodynamics
104-106
,
516
522
(
2012
).
8.
D. A.
Philips
,
R.
Rossi
, and
G.
Iaccarino
,
Journal of Fluid Mechanics
723
,
404
428
(
2013
).
9.
J.
Ling
and
J.
Templeton
,
Physics of Fluids
27
, p.
085103aug
(
2015
).
10.
Y.
Dai
, “Large Eddy Simulation of Labyrinth Seals and Rib Shapes for Internal Cooling Passages,” Phd thesis,
University of Cambridge
2018
.
11.
B. E.
Launder
and
B. I.
Sharma
,
Letters in Heat and Mass Transfer
1
,
131
138
(
1974
).
12.
C. J.
Yap
, “Turbulent Heat and Momentum Transfer in Recirculating and Impinging Flows,” Phd thesis,
University of Manchester
1987
.
13.
S.
Acharya
,
S.
Dutta
,
T. A.
Myrum
, and
R. S.
Baker
,
International Journal of Heat and Mass Transfer
36
,
2069
2082
(
1993
).
14.
S.
Banerjee
,
R.
Krahl
,
F.
Durst
, and
Z.
Ch
,
Journal of Turbulence
8
(
2007
).
15.
L.
Breiman
,
Machine learning
45
,
5
32
(
2001
).
16.
Y.
Bentaleb
,
S.
Lardeau
, and
M. A.
Leschziner
,
Journal of Turbulence
13
,
1
28
(
2012
).
17.
M.
Marquillie
,
J. P.
Laval
, and
R.
Dolganov
,
Journal of Turbulence
9
,
1
23
(
2008
).
18.
L. A.
Schiavo
,
A. B.
Jesus
,
J. L.
Azevedo
, and
W. R.
Wolf
,
International Journal of Heat and Fluid Flow
56
,
137
151
(
2015
).
19.
J.
Fröhlich
,
C. P.
Mellen
,
W.
Rodi
,
L.
Temmerman
, and
M. A.
Leschziner
,
Journal of Fluid Mechanics
526
,
19
66
(
2005
).
20.
R.
Vinuesa
,
P.
Schlatter
, and
H. M.
Nagib
,
Physical Review Fluids
3
, p.
054606
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.