The aim of this paper is to derive the exponential ergodicity in the Wasserstein distance for a piecewise-deterministic Markov process (PDMP), being typically encountered in biological models, defined via interpolation of some discrete-time Markov chain. The key idea of the presented approach is to show that existence of an appropriate Markovian coupling between two instances of the chain implies that the transition semigroup associated with the continuous-time process is exponentially contracting.
Topics
Markov processes
REFERENCES
1.
2.
D.
Czapla
and J.
Kubieniec
, Dynamical Systems
34
, 130
–156
(2019
).3.
D.
Czapla
, H.
Wojewódka
, and K.
Horbacz
, AIP Conference Proceedings
1978
, 470008:1
–4
(2018
).4.
M.
Benaïm
, S.
Le Borgne
, F.
Malrieu
, and P.-A.
Zitt
, Ann. Inst. Henri Poincaré Probab.
51
, 1040
–1075
(2014
).5.
M.
Benaïm
, S.
Le Borgne
, F.
Malrieu
, and P.-A.
Zitt
, Electron. Commun. Probab.
17
(2012
).6.
M.
Mackey
, M.
Tyran-Kamińska
, and R.
Yvinec
, SIAM J. Appl. Math.
73
, 1830
–1852
(2013
).7.
B.
Cloez
and M.
Hairer
, Bernoulli
21
, 505
–536
(2015
).8.
V.
Bogachev
, Measure Theory
, Vol. 2
(Springer-Verlag
, Berlin
, 2007
).9.
10.
M.
Hairer
, Probab. Theory Related Fields
124
, 345
–380
(2002
).
This content is only available via PDF.
© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.