The aim of this paper is to derive the exponential ergodicity in the Wasserstein distance for a piecewise-deterministic Markov process (PDMP), being typically encountered in biological models, defined via interpolation of some discrete-time Markov chain. The key idea of the presented approach is to show that existence of an appropriate Markovian coupling between two instances of the chain implies that the transition semigroup associated with the continuous-time process is exponentially contracting.

1.
D.
Czapla
,
K.
Horbacz
, and
H.
Wojewódka
, arXiv:1707.06489 (
2017
).
2.
D.
Czapla
and
J.
Kubieniec
,
Dynamical Systems
34
,
130
156
(
2019
).
3.
D.
Czapla
,
H.
Wojewódka
, and
K.
Horbacz
,
AIP Conference Proceedings
1978
,
470008:1
4
(
2018
).
4.
M.
Benaïm
,
S.
Le Borgne
,
F.
Malrieu
, and
P.-A.
Zitt
,
Ann. Inst. Henri Poincaré Probab.
51
,
1040
1075
(
2014
).
5.
M.
Benaïm
,
S.
Le Borgne
,
F.
Malrieu
, and
P.-A.
Zitt
,
Electron. Commun. Probab.
17
(
2012
).
6.
M.
Mackey
,
M.
Tyran-Kamińska
, and
R.
Yvinec
,
SIAM J. Appl. Math.
73
,
1830
1852
(
2013
).
7.
B.
Cloez
and
M.
Hairer
,
Bernoulli
21
,
505
536
(
2015
).
8.
V.
Bogachev
,
Measure Theory
, Vol.
2
(
Springer-Verlag
,
Berlin
,
2007
).
9.
D.
Czapla
,
K.
Horbacz
, and
H.
Wojewódka
, arXiv:1804.09220 (
2018
).
10.
M.
Hairer
,
Probab. Theory Related Fields
124
,
345
380
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.