Efficiency and effectiveness of many robotics tasks depend crucially on the quality of the solution of the problem of collision avoidance. In many cases, traditional path planning and obstacle avoiding approaches and algorithms can not guarantee a sufficiently high quality of the solution of the problem of collision avoidance for multi-robot and human-robot interactions. In this paper, we consider demonstrations of true intentions and demonstrations of deceptions for the problem of collision avoidance.

1.
M. M.
Almasri
,
A. M.
Alajlan
, and
K. M.
Elleithy
,
IEEE Sensors J.
16
,
5021
5028
(
2016
).
2.
L.
Zeng
and
G. M.
Bone
,
Int. J. Adv. Robot. Syst.
10
,
1
14
(
2013
).
3.
F.
Liu
and
A.
Narayanan
,
LNCS
8291
,
181
196
(
2013
).
4.
M.
Agarwal
,
N.
Agrawal
,
S.
Sharma
,
L.
Vig
, and
N.
Kumar
,
Expert Syst. Appl.
42
,
7797
7811
(
2015
).
5.
Y.
Li
,
L.
Chen
,
K. P.
Tee
, and L. Q,
Neurocomputing
170
,
168
175
(
2015
).
6.
H.
Oh
,
A. R.
Shirazi
,
C.
Sun
, and
Y.
Jin
,
Robot. Auton. Syst.
91
,
83
100
(
2017
).
7.
W.
Burgard
,
A. B.
Cremers
,
D.
Fox
,
D.
Hahnel
,
G.
Lakemeyer
,
D.
Schulz
,
W.
Steiner
, and
S.
Thrun
,
Artif. Intell.
114
,
3
55
(
1999
).
8.
S.
Thrun
,
M.
Bennewitz
,
W.
Burgard
,
A. B.
Cremers
,
F.
Dellaert
,
D.
Fox
,
D.
Hahnel
,
C.
Rosenberg
,
N.
Roy
,
J.
Schulte
, and
D.
Schulz
,
"Minerva: a second-generation museum tour-guide robot," in
Proceedings of the 1999 IEEE International Conference on Robotics and Automation
, Vol.
3
(
IEEE Press
,
Piscataway
,
1999
), pp.
1999
2005
.
9.
I. R.
Nourbakhsh
,
C.
Kunz
, and
T.
Willeke
,
"The mobot museum robot installations: a five year experiment
," in
IEEE/RJS International Conference on Intelligent Robots and Systems
(
IEEE Press
,
Piscataway
,
2003
), pp.
3636
3641
.
10.
B.
Lacevic
and
P.
Rocco
,
"Kinetostatic danger field - a novel safety assessment for human-robot interaction
," in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IEEE Press
,
Piscataway
,
2010
), pp.
2169
2174
.
11.
M. P.
Polverini
,
A. M.
Zanchettin
, and
P.
Rocco
,
Robot. Comput. Integr. Manuf.
46
,
25
37
(
2017
).
12.
P.
Trautman
,
J.
Ma
,
R. M.
Murray
, and
A.
Krause
,
Int. J. Rob. Res.
34
,
335
356
(
2015
).
13.
S.
Lo
,
C.
Cheng
, and
H.
Huang
,
J. Intell. Robot. Syst.
82
,
3
19
(
2016
).
14.
A.
Dragan
,
R.
Holladay
, and
S.
Srinivasa
,
Auton. Robots
39
,
331
345
(
2015
).
15.
S.
Gerwehr
and
R. W.
Glenn
,
The art of darkness: deception and urban operations
(
Rand Corporation
,
Santa Monica
,
2000
).
16.
A. R.
Wagner
and
R. C.
Arkin
,
Int. J. of Soc. Robotics
3
,
5
26
(
2011
).
17.
A.
Gorbenko
and
V.
Popov
, "Deceptive actions and robot collision avoidance," in
Biologically Inspired Cognitive Architectures 2019, Advances in Intelligent Systems and Computing
948
, edited by
A. V.
Samsonovich
(
Springer, Cham, Switzerland
,
2020
), pp.
105
109
.
18.
S. X.
Yang
and
M.
Meng
,
Neural Netw.
138
,
143
148
(
2000
).
19.
M.
Althoff
and
S.
Lutz
,
"Automatic generation of safety-critical test scenarios for collision avoidance of road vehicles
," in
2018 IEEE Intelligent Vehicles Symposium (IV) (IEEE Press, Piscataway, 2018
), pp.
1
8
.
20.
C.
Vassallo
,
A.
Olivier
,
P.
Soueres
,
A.
Cretual
,
O.
Stasse
, and
J.
Pettre
,
Gait & Posture
51
,
97
103
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.