The paper presents a combination of the Galerkin-Bubnov decomposition procedure and Optimal Homotopy Asymptotic Method (OHAM) to derive analytical approximate solutions to nonlinear vibration of clamped-clamped micro-electro-mechanical system (MEMS). The nonlinear governing equation of microbeam vibration pre-deformed by an elastic constant field includes both even and odd nonlinearities. The accuracy of the proposed procedure is validates via numerical results.

1.
M. I.
Younis
,
J. Microelectromechanical Syst.
12
,
672
68O
(
2003
)
2.
A. H.
Nayfeh
,
M.I.
Younis
,
E.M.A.
Rehman
,
Nonlin. Dyn.
48
,
153
163
(
2007
)
3.
H.M.
Sedighi
,
M.
Changizian
,
A.
Naghrehabadi
,
Latin Amer. J Solid Struct.
11
,
810
825
(
2014
)
4.
J.H.
Kuang
,
C.J.
Chen
,
Math. Comput. Modelling
41
,
1479
1491
(
2005
)
5.
W-H.
Lin
,
Y.P.
Zhao
,
Chaos Solitons Fractals
23
,
1777
1785
(
2005
)
6.
M.
Mojahedi
,
M.M.
Zand
,
M.T.
Ahmadian
,
M.
Babaei
,
Int. J. Struct. Stabil. Dyn.
11
,
1119
1137
(
2011
)
7.
J.
Yang
,
Y.J.
Hu
,
S.
Kitiparnchai
,
Comp. amd Struct.
96
,
25
33
(
2012
)
8.
A.R.
Askari
,
M.
Tahani
,
Appl. Mech. Mater.
226
,
181
185
(
2012
)
9.
W.D.
Yang
,
X.
Wang
,
C.Q.
Fang
,
G.
Lu
,
Sens. Actuat. A: Physical
,
220
,
178
187
(
2014
)
10.
S.B.
Yamgoue
,
A.J.
Tchiegang
,
J. Nonlin. Dyn.
ID-735712 (
2014
)
11.
N.
Herisanu
,
V.
Marinca
,
MATEC Web of Conf.
148
,
13003
(
2018
)
12.
N.
Herisanu
,
V.
Marinca
,
G.
Madescu
,
AIP Conf. Proc.
1863
,
46002
(
2017
)
13.
V.
Marinca
,
N.
Herisanu
,
AIP Conf. Proc.
2116
,
300003
(
2019
)
14.
N.
Herisanu
,
V.
Marinca
,
G.
Madescu
,
F.
Dragan
,
Energies
12
,
915
(
2019
)
This content is only available via PDF.
You do not currently have access to this content.