The paper presents a combination of the Galerkin-Bubnov decomposition procedure and Optimal Homotopy Asymptotic Method (OHAM) to derive analytical approximate solutions to nonlinear vibration of clamped-clamped micro-electro-mechanical system (MEMS). The nonlinear governing equation of microbeam vibration pre-deformed by an elastic constant field includes both even and odd nonlinearities. The accuracy of the proposed procedure is validates via numerical results.
REFERENCES
1.
M. I.
Younis
, J. Microelectromechanical Syst.
12
, 672
–68O
(2003
)2.
A. H.
Nayfeh
, M.I.
Younis
, E.M.A.
Rehman
, Nonlin. Dyn.
48
, 153
–163
(2007
)3.
H.M.
Sedighi
, M.
Changizian
, A.
Naghrehabadi
, Latin Amer. J Solid Struct.
11
, 810
–825
(2014
)4.
J.H.
Kuang
, C.J.
Chen
, Math. Comput. Modelling
41
, 1479
–1491
(2005
)5.
W-H.
Lin
, Y.P.
Zhao
, Chaos Solitons Fractals
23
, 1777
–1785
(2005
)6.
M.
Mojahedi
, M.M.
Zand
, M.T.
Ahmadian
, M.
Babaei
, Int. J. Struct. Stabil. Dyn.
11
, 1119
–1137
(2011
)7.
J.
Yang
, Y.J.
Hu
, S.
Kitiparnchai
, Comp. amd Struct.
96
, 25
–33
(2012
)8.
A.R.
Askari
, M.
Tahani
, Appl. Mech. Mater.
226
, 181
–185
(2012
)9.
W.D.
Yang
, X.
Wang
, C.Q.
Fang
, G.
Lu
, Sens. Actuat. A: Physical
, 220
, 178
–187
(2014
)10.
11.
N.
Herisanu
, V.
Marinca
, MATEC Web of Conf.
148
, 13003
(2018
)12.
13.
V.
Marinca
, N.
Herisanu
, AIP Conf. Proc.
2116
, 300003
(2019
)14.
N.
Herisanu
, V.
Marinca
, G.
Madescu
, F.
Dragan
, Energies
12
, 915
(2019
)
This content is only available via PDF.
© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.