We consider binary gas mixture flows with viscous compressible components in the absence of chemical reactions. We aggregate the previously derived regularized equations for inhomogeneous mixtures and thus derive new simpler regularized equations for homogeneous ones (i.e., with the common velocity and temperature). The entropy balance equation with the non-negative entropy production is stated for the new equations. They are constructed for numerical simulations of flows.
Topics
Thermodynamic properties
REFERENCES
1.
R. I.
Nigmatulin
, Dynamics of Multiphase Media
, Vol. 1
(CRC Press
, Boca Rayton
, 1990
).2.
Yu. P.
Golovachev
, Numerical Simulation of Viscous Gas Flows in a Shock Layer
(Nauka
, Moscow
, 1996
) [in Russian].3.
V.
Giovangigli
, Multicomponent Flow Modeling
(Birkhäuser
, Boston
, 1999
).4.
I. G.
Lebo
and V. F.
Tishkin
, Investigation of Hydrodynamic Instability in Problems of Laser Thermonuclear Fusion
(Fizmatlit
, Moscow
, 2006
) [in Russian].5.
T. G.
Elizarova
, I. A.
Graur
and J.-C.
Lengrand
, “Two fluid computational model for a binary gas mixture
”, European J. Mech. B/Fluids
20
, 351
–369
(2001
).6.
T. G.
Elizarova
, Quasi-Gas Dynamic Equations
(Springer
, Berlin-Heidelberg
, 2009
).7.
B. N.
Chetverushkin
, Kinetic Schemes and Quasi-Gasdynamic System of Equations
(CIMNE
, Barcelona
, 2008
).8.
M. V.
Kraposhin
, E. V.
Smirnova
, T. G.
Elizarova
and M. A.
Istomina
, “Development of a new OpenFOAM solver using regularized gas dynamic equations
”, Comput. Fluids
166
, 163
–175
(2018
).9.
G. A.
Bird
, Molecular Gas Dynamic and the Direct Simulation of Gas Flows
(Clarendon Press
, Oxford
, 1994
).10.
T. G.
Elizarova
, A. A.
Zlotnik
and B. N.
Chetverushkin
, “On quasi-gasdynamic and quasi-hydrodynamic equtions for binary mixtures of gases
”, Dokl. Math.
90
, 1
–5
(2014
).11.
T. G.
Elizarova
and J.-C.
Lengrand
, “Free parameters for the modelization of nonmonatomic binary gas mixtures
”, J. Thermophys. Heat Transfer
30
, 695
–697
(2016
).12.
Y.
Zhou
, “Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II
”, Phys. Reports
723–725
, 1
–160
(2017
).13.
A.
Zlotnik
and V.
Gavrilin
, “On quasi-gasdynamic system of equations with general equations of state and its application
”, Math. Model. Anal.
16
, 509
–526
(2011
).14.
B. N.
Chetverushkin
and A. A.
Zlotnik
, “On some properties of multidimensional hyperbolic quasigasdynamic systems of equations
”, Russ. J. Math. Phys.
24
, 299
–309
(2017
).
This content is only available via PDF.
© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.