Recently, Hamiltonian Boundary Value Methods (HBVMs), have been used as spectral methods in time for effectively solving multi-frequency, highly-oscillatory and/or stiffly-oscillatory problems. A complete analysis of their use in such a fashion has been also carried out, providing a theoretical framework explaining their effectiveness. We report here a few numerical examples showing their potentialities to provide a fully accurate solver for general ODE problems.

1.
P.
Amodio
,
L.
Brugnano
,
F.
Iavernaro
.
Analysis of Spectral Hamiltonian Boundary Value Methods (SHBVMs) for the numerical solution of ODE problems
.
Numer. Algorithms
(
2019
)
2.
L.
Brugnano
,
G. Frasca
Caccia
,
F.
Iavernaro
.
Efficient implementation of Gauss collocation and Hamiltonian Boundary Value Methods
.
Numer. Algorithms
65
,
633
650
(
2014
).
3.
L.
Brugnano
,
F.
Iavernaro
. Line Integral Methods for Conservative Problems.
Chapman and Hall/CRC
,
Boca Raton, FL
,
2016
.
4.
L.
Brugnano
,
F.
Iavernaro
.
Line Integral Solution of Differential Problems
.
Axioms
7
(
2
),
36
(
2018
) .
5.
L.
Brugnano
,
F.
Iavernaro
,
J.I.
Montijano
,
L.
Rández
.
Spectrally accurate space-time solution of Hamiltonian PDEs
.
Numer. Algorithms
(
2018
)
6.
L.
Brugnano
,
F.
Iavernaro
,
D.
Trigiante
.
Hamiltonian BVMs (HBVMs): A family of “drift free” methods for integrating polynomial hamiltonian problems
.
AIP Conference Proc.
1168
,
715
718
(
2009
).
7.
L.
Brugnano
,
F.
Iavernaro
,
D.
Trigiante
.
Hamiltonian Boundary Value Methods (Energy Preserving Discrete Line Integral Methods
).
JNAIAM J. Numer. Anal. Ind. Appl. Math.
5
,
17
37
(
2010
).
8.
L.
Brugnano
,
F.
Iavernaro
,
D.
Trigiante
.
A note on the efficient implementation of Hamiltonian BVMs
.
J. Comput. Appl. Math.
236
,
375
383
(
2011
).
9.
L.
Brugnano
,
F.
Iavernaro
,
D.
Trigiante
.
A simple framework for the derivation and analysis of effective one-step methods for ODEs
.
Appl. Math. Comput.
218
,
8475
8485
(
2012
).
10.
L.
Brugnano
,
C.
Magherini
.
Blended Implementation of Block Implicit Methods for ODEs
.
Appl. Numer. Math.
42
,
29
45
(
2002
).
11.
L.
Brugnano
,
C.
Magherini
.
Recent Advances in Linear Analysis of Convergence for Splittings for Solving ODE problems
.
Appl. Numer. Math.
59
,
542
557
(
2009
).
12.
L.
Brugnano
,
J.I.
Montijano
,
L.
Rández
.
On the effectiveness of spectral methods for the numerical solution of multi-frequency highly-oscillatory Hamiltonian problems
.
Numer. Algorithms
(
2018
)
This content is only available via PDF.
You do not currently have access to this content.