Recently, Hamiltonian Boundary Value Methods (HBVMs), have been used as spectral methods in time for effectively solving multi-frequency, highly-oscillatory and/or stiffly-oscillatory problems. A complete analysis of their use in such a fashion has been also carried out, providing a theoretical framework explaining their effectiveness. We report here a few numerical examples showing their potentialities to provide a fully accurate solver for general ODE problems.
Topics
Spectral methods
REFERENCES
1.
P.
Amodio
, L.
Brugnano
, F.
Iavernaro
. Analysis of Spectral Hamiltonian Boundary Value Methods (SHBVMs) for the numerical solution of ODE problems
. Numer. Algorithms
(2019
) 2.
L.
Brugnano
, G. Frasca
Caccia
, F.
Iavernaro
. Efficient implementation of Gauss collocation and Hamiltonian Boundary Value Methods
. Numer. Algorithms
65
, 633
–650
(2014
).3.
L.
Brugnano
, F.
Iavernaro
. Line Integral Methods for Conservative Problems. Chapman and Hall/CRC
, Boca Raton, FL
, 2016
.4.
L.
Brugnano
, F.
Iavernaro
. Line Integral Solution of Differential Problems
. Axioms
7
(2
), 36
(2018
) .5.
L.
Brugnano
, F.
Iavernaro
, J.I.
Montijano
, L.
Rández
. Spectrally accurate space-time solution of Hamiltonian PDEs
. Numer. Algorithms
(2018
) 6.
L.
Brugnano
, F.
Iavernaro
, D.
Trigiante
. Hamiltonian BVMs (HBVMs): A family of “drift free” methods for integrating polynomial hamiltonian problems
. AIP Conference Proc.
1168
, 715
–718
(2009
).7.
L.
Brugnano
, F.
Iavernaro
, D.
Trigiante
. Hamiltonian Boundary Value Methods (Energy Preserving Discrete Line Integral Methods
). JNAIAM J. Numer. Anal. Ind. Appl. Math.
5
, 17
–37
(2010
).8.
L.
Brugnano
, F.
Iavernaro
, D.
Trigiante
. A note on the efficient implementation of Hamiltonian BVMs
. J. Comput. Appl. Math.
236
, 375
–383
(2011
).9.
L.
Brugnano
, F.
Iavernaro
, D.
Trigiante
. A simple framework for the derivation and analysis of effective one-step methods for ODEs
. Appl. Math. Comput.
218
, 8475
–8485
(2012
).10.
L.
Brugnano
, C.
Magherini
. Blended Implementation of Block Implicit Methods for ODEs
. Appl. Numer. Math.
42
, 29
–45
(2002
).11.
L.
Brugnano
, C.
Magherini
. Recent Advances in Linear Analysis of Convergence for Splittings for Solving ODE problems
. Appl. Numer. Math.
59
, 542
–557
(2009
).12.
L.
Brugnano
, J.I.
Montijano
, L.
Rández
. On the effectiveness of spectral methods for the numerical solution of multi-frequency highly-oscillatory Hamiltonian problems
. Numer. Algorithms
(2018
)
This content is only available via PDF.
© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.