Generally, two electrode based amperometric biosensors show extremely low current signal output around pico ampere (pA) to micro ampere (µA) range. This paper describes the development of electronic reader to capture and amplify four different range of current as mili, micro, nano and pico ampere and convert it to detectable voltage range as an output signal to the microcontroller. The MAX4238 op-amp IC was used to amplify micro voltage to mili voltage. NodeMCU was act as the process and control circuit to read the output voltage from the amplifier circuit. The entire system is comprised of a voltage amplifier circuit, filter circuit, microcontroller and power supply unit. The range of the current measurement of the system was from 1 pA to 650 mA. The amplifier operation was measured with a high impedance current source and has been compared with the theoretical measurement. The Design Spark PCB software was used to design the voltage amplifier circuit. Arduino software was used to create a programming code to upload in NodeMCU microcontroller.

1.
M.
Xu
,
R.
Wang
, and
Y.
Li
,
Talanta
,
162
(October 2016),
511
522
(
2017
).
2.
M. N. A.
Uda
,
R. D. A. A.
Rajapaksha
,
M. N. A.
Uda
,
U.
Hashim
, and
A. B.
Jambek
, “
Selective detection of E.coli O157:H7 bacteria DNA using electrical based aluminium interdigitated electrode biosensor
,” (
AIP Conf. Proc.
,
2018
)
2045
(December).
3.
R. D. A. A.
Rajapaksha
and
U.
Hashim
, “
Impedance based Aluminium Interdigitated Electrode (Al-IDE) Biosensor on Silicon Substrate for Salmonella Detection
,” (
2018 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur
,
2018
), pp.
93
96
.
4.
N. A. N.
Yahaya
,
R. D. A. A.
Rajapaksha
,
M. N. A.
Uda
, and
U.
Hashim
, “
Ultra-low current biosensor output detection using portable electronic reader
,” (
AIP Conf. Proc
., vol.
1885
,
2017
).
5.
N.
Tamerat
,
Y.
Muktar
, and
D.
Shiferaw
,
Journal of Veterinary Science & Technology
,
7
(
5
), (
2016
).
6.
R.
Singh
,
M.
Das
,
G.
Sumana
,
R. K.
Gupta
,
S.
Sood
, and
B. D.
Malhotra
,
Sensors Actuators B. Chem.
,
197
,
385
404
(
2014
).
7.
J. T.
Italia
,
Veterinarski Arhiv
,
82
(
3
),
283
294
(
2012
).
8.
R. D. A. A.
Rajapaksha
,
N. A. N.
Yahaya
,
M. N. A.
Uda
, and
U.
Hashim
, “
Development of Portable Electronic Reader for Pico Ampere Detection for Two Electrode based Amperometric Biosensor Applications
,” (
AIP Conference Proceedings
2045
,
020021
,
2018
), pp.
7
.
9.
P.
Poltronieri
,
V.
Mezzolla
,
E.
Primiceri
, and
G.
Maruccio
,
Foods
,
3
(
3
)
511
526
(
2014
).
10.
N. A.
Abdul-Mutalib
,
A. N.
Syafinaz
,
K.
Sakai
, and
Y.
Shirai
,
Int. Food Res. J.
,
22
(
3
),
896
901
(
2015
).
11.
M. N. A.
Uda
,
Process Biochem.
,
68
(February),
37
42
(
2018
).
12.
V.
Velusamy
,
K.
Arshak
,
O.
Korostynska
,
K.
Oliwa
, and
C.
Adley
,
Biotechnol. Adv.
,
28
(
2
),
232
254
(
2010
).
13.
D.
Ivnitski
,
I.
Abdel-hamid
,
P.
Atanasov
, and
E.
Wilkins
,
Biosensors for detection of pathogenic bacteria
,
14
,
599
624
(
1999
).
14.
R. D. A. A.
Rajapaksha
,
U.
Hashim
,
N. Z.
Natasha
,
M. N. A.
Uda
,
V.
Thivina
, and
C. A. N.
Fernando
, “
Gold nano-particle based Al interdigitated electrode electrical biosensor for specific ssDNA target detection
,” (
Proc. 2017 IEEE Reg. Symp. Micro Nanoelectron. RSM 2017)
, pp.
191
194
.
15.
R. D. A. A.
Rajapaksha
,
U.
Hashim
,
M. N. A.
Uda
, and
C. A. N.
Fernando
,
High-performance Electrical Variable Resistor Sensor for E. coli O157
:
H7 Detection
,
10
(
1
),
61
64
(
2017
).
16.
R. D. A. A.
Rajapaksha
,
U.
Hashim
,
M. N. Afnan
Uda
,
C. A. N.
Fernando
, and
S. N. T.
De Silva
,
Microsyst. Technol.
, (
2017
).
17.
R. D. A. A.
Rajapaksha
,
N. A. N.
Azman
,
M. N. A.
Uda
,
U.
Hashim
,
S. C. B.
Gopinath
, and
C. A. N.
Fernando
, “
Multichannel PDMS microfluidic based nano-biolab-on-a-chip for medical diagnostics
,” (
AIP Conf. Proc
., vol.
2045
, no. December,
2018
).
18.
W. P. Sharifa
Ezat
,
D.
Netty
, and
G.
Sangaran
,
Malaysian J. Public Heal. Med.
,
13
(
2
),
1
7
(
2013
).
19.
O.
Abdelfattah
,
G. W.
Roberts
,
I.
Shih
, and
Y. C.
Shih
, “
An ultra-low-voltage CMOS process-insensitive self-biased OTA with rail-to-rail input range
,” (
IEEE Trans. Circuits Syst. I Regul. Pap.
, vol.
62
, no.
10
,
2015
) pp.
2380
2390
.
20.
S.
Geng
,
C.
Liu
,
J.
Wang
,
L.
Hou
, and
Y.
Yuan
,
TELKOMNIKA Indones. J. Electr. Eng.
,
12
(
5
),
3713
3718
(
2014
).
21.
R.
Bhattacharya
,
N.
Bandyopadhyay
, and
S.
Kalaivani
, “
Real time Android app based respiration rate monitor
,” (
Proc. Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2017, vol. 2017-January
,
2017
), pp.
709
712
.
22.
P. V
Savaliya
,
S. B.
Somani
, and
V. V
Shete
,
Int. J. Adv. Res. Comput. Commun. Eng.
,
4
(
6
),
382
385
(
2015
).
23.
B.
Goldstein
,
2011 Ieee Iscas
,
6
(
2
),
1017
1020
(
2011
).
24.
B.
Linares-Barranco
,
T.
Serrano-Gotarredona
,
R.
Serrano-Gotarredona
, and
C.
Serrano-Gotarredona
,
Analog Integr. Circuits Signal Process.
,
38
,
103
119
(
2004
).
25.
M.
Zhao
 et al., “
A low-noise switched-capacitor interface for a capacitive micro-accelerometer
,” (
Proc. - IEEE Int. Symp. Circuits Syst., vol. 2015-July
,
2015
) pp.
337
340
.
26.
N. Z.
Natasha
,
R. D. A. A.
Rajapaksha
,
M. N. A.
Uda
, and
U.
Hashim
, “Electrical DNA biosensor using aluminium interdigitated electrode for E.Coli O157:H7 detection,” (
AIP Conf. Proc
., vol.
1885
,
2017
).
27.
U.
Hashim
 et al., “
Development of electronic reader for formaldehyde detection sensor
,” (
Proc. - 2015 2nd Int. Conf. Biomed. Eng. ICoBE 2015
, March,
2015
) pp.
30
31
This content is only available via PDF.
You do not currently have access to this content.