In integrated electrical, heat and cold supply installations, gas reciprocating engines (GE) are widely used. The heat removed from the GE in the form of hot water with a temperature of about 90 °C is transformed into cold by an absorption lithium-bromide-chiller (ACh) with a decrease in water temperature by no more than 10…15 °C. At the same time, in order to maintain the thermal state of the GE at a safe level, the temperature of chilled water at the inlet of the engine should not be higher than 70 °C. Excessive heat is discharged into the atmosphere by the emergency discharge radiator. These losses are about 25%. A system for their utilization in refrigeration ejector chiller is proposed. With this the received addition cold can be used for supplementary cooling of the GE scavenge gas-air mixture, which is usually cooled by a radiator. But at high ambient temperatures the cooling potential of radiator can be insufficient that leads to falling the fuel efficiency of GE. It is shown that at elevated ambient temperatures additional cooling of the scavenge gas- air mixture allows to reduce specific fuel consumption and increase power output of the GE.

1.
Economic utilization of Biomass and Municipal Waste for power generation. Some energy lasts for generations (
GE Jenbacher Company Overview
, June 13,
2007
),
39
p.
2.
K.
Payrhuber
and
C.
Trapp
, GE's new Jenbacher Gas Engines with 2-stage Turbocharging. (
Internationale Energiewirtschaftstagung an der TU Wien IEW
,
2011
),
14
p.
3.
C.
Trapp
,
S.
Laiminger
,
D.
Chvatal
,
A.
Wimmer
,
E.
Schneßl
and
G.
Pirker
, “Die neue Jenbacher Gasmotorengeneration - mit zweistufiger Aufladung zu höchsten Wirkungsgraden,“ in
Internationales Wiener Motorensymposium=International Vienna Motor Symposium
, (
Wien
,
Austria
,
2011
), pp.
281
297
.
4.
Vineland
,
Combined heat and power project feasibility study
(
Vineland veterans memorial home CHP
,
2018
),
412
p.
5.
H.
Ghaebi
,
Sh.
Karimkashi
and
M.H.
Saidi
,
International journal of refrigeration
35
,
1384
1392
(
2012
).
6.
T.
Elsenbruch
, Jenbacher gas engines a variety of efficient applications (
Bucureşti
, October 28,
2010
),
73
p.
7.
Ch.
Trapp
,
J.
Klausner
,
H.
Schaumberger
,
J.
Lang
and
M.
Haidn
, “
GE Jenbacher Gas Engines
,“ in
CIMAC
(
2010
).
8.
K.
Payrhuber
and
M.
Schneider
, “
Advancements on GE's Jenbacher Type 6 Engines
,” in
PowerGen. Europe
(
2010
).
9.
M.
Radchenko
,
R.
Radchenko
,
O.
Ostapenko
,
A.
Zubarev
and
A.
Hrych
, “
Enhancing the utilization of gas engine module exhaust heat by two-stage chillers for combined electricity, heat and refrigeration
,” in
The 5th "International Conference on Systems and Informatics: ICSAI 2018"
(
Jiangsu
,
Nanjing, China
,
2018
), pp.
240
244
.
10.
A.
Radchenko
,
D.
Mikielewicz
,
S.
Forduy
,
M.
Radchenko
and
A.
Zubarev
, “Monitoring the Fuel Efficiency of Gas Engine in Integrated Energy System,” in
Integrated Computer Technologies in Mechanical Engineering (ICTM 2019)
,
Intelligent Systems and Computing. Springer
,
Cham
. 1113, edited by
Nechyporuk
M.
, et al.
(
2019
), pp.
363
370
.
11.
E.
Trushliakov
,
A.
Radchenko
,
S.
Forduy
,
A.
Zubarev
and
A.
Hrych
, “Increasing the Operation Efficiency of Air Conditioning System for Integrated Power Plant on the Base of Its Monitoring,” in
Integrated Computer Technologies in Mechanical Engineering (ICTM 2019)
,
Intelligent Systems and Computing. Springer
,
Cham
. 1113, edited by
Nechyporuk
M.
, et al.
(
2020
), pp.
351
360
.
12.
A.
Radchenko
,
M.
Radchenko
,
A.
Konovalov
and
A.
Zubarev
,
E3S Web of Conferences. HTRSE-2018
,
70
(
03011
),
6
p, (
2018
).
13.
S.
Popli
,
P.
Rodgers
and
V.
Eveloy
,
Applied Energy
93
,
623
636
(
2012
).
14.
M. F.
Elberry
, et al.,
Alexandria Engineering Journal
57
,
2679
2686
(
2018
).
15.
N.
Farouk
,
L.
Sheng
and
Q.
Hayat
,
International Journal of Computer Science Issues
10
,
439
442
(
2013
).
16.
J. L.
Forsyth
,
IGT International Liquefied Natural Gas Conference Proceedings
3
,
1763
1778
(
2013
).
17.
A.
Khaliq
,
I.
Dincer
and
P. B.
Sharma
,
Journal of Energy Institute
83
(
2
),
79
85
(
2010
).
18.
K.
Kavvadias
,
A.
Tosios
and
Z.
Maroulis
,
Energy Convers Manage
51
,
833
845
(
2009
).
19.
M. S.
Rocha
,
R.
Andreos
and
J.R.
Simões-Moreira
,
Applied Thermal Engineering
41
,
84
91
(
2012
).
20.
F.
Freschi
,
L.
Giaccone
,
P.
Lazzeroni
and
M.
Repetto
,
Applied Energy
107
,
157
172
(
2013
).
21.
P. A.
Rodriguez-Aumente
 et al. 
Applied Thermal Engineering
50
,
1496
1503
(
2013
).
22.
J.
Ortiga
,
J.C.
Bruno
and
A.
Coronas
,
Applied Thermal Engineering
50
,
1536
1542
(
2013
).
23.
D.
Konovalov
and
H.
Kobalava
, “Efficiency Analysis of Gas Turbine Plant Cycles with Water Injection by the Aerothermopressor,” in
Advances in Design, Simulation and Manufacturing II. DSMIE 2019
,
Lecture Notes in Mechanical Engineering. Springer
,
Cham
., edited by
Ivanov
V.
, et al.
(
2019
), pp.
581
591
.
24.
A.
Radchenko
,
M.
Radchenko
,
E.
Trushliakov
,
S.
Kantor
and
V.
Tkachenko
, “
Statistical method to define rational heat loads on railway air conditioning system for changeable climatic conditions
,” in
The 5th “International Conference on Systems and Informatics: ICSAI 2018”
(
Jiangsu
,
Nanjing, China
,
2018
), pp.
1294
1298
.
25.
S.
Elbel
and
N.
Lawrence
,
International Journal of Refrigeration
62
,
1
18
(
2016
).
26.
N.
Lawrence
and
S.
Elbel
,
International Journal of Refrigeration
58
,
41
52
(
2015
).
27.
D.
Butrymowicz
, et al.,
E3S Web of Conferences. HTRSE-2018
70
(
03002
),
7p
. (
2018
).
28.
K.
Smierciew
, et al.,
Energy and Buildings
80
,
260
267
(
2014
).
29.
S.
Popli
,
P.
Rodgers
and
V.
Eveloy
,
Applied Thermal Engineering
50
,
918
931
(
2013
).
30.
A. M.
Bassily
,
Applied Energy
77
,
249
272
(
2004
).
31.
A.
Radchenko
,
L.
Bohdal
,
Y.
Zongming
,
B.
Portnoi
and
V.
Tkachenko
, “
Rational designing of gas turbine inlet air cooling system
,” in
Grabchenko's International Conference on Advanced Manufacturing Processes. InterPartner-2019
,
Lecture Notes in Mechanical Engineering. Springer
,
Cham
., edited by
Tonkonogyi
V.
, et al.
(
2020
), pp.
591
599
.
32.
R.
Radchenko
,
A.
Radchenko
,
S.
Serbin
,
S.
Kantor
and
B.
Portnoi
,
E3S Web of Conferences. HTRSE-2018
,
70
(
03012
),
6p
. (
2018
).
33.
V.
Kornienko
,
R.
Radchenko
,
A.
Stachel
,
A.
Andreev
and
M.
Pyrysunko
, “Correlations for pollution on condensing surfaces of exhaust gas boilers with water-fuel emulsion combustion,” in
Grabchenko's International Conference on Advanced Manufacturing Processes. InterPartner-2019
,
Lecture Notes in Mechanical Engineering. Springer
,
Cham
., edited by
Tonkonogyi
V.
, et al.
(
2020
), pp.
530
539
.
34.
R.
Radchenko
,
V.
Kornienko
,
M.
Pyrysunko
,
M.
Bogdanov
and
A.
Andreev
, “Enhancing the Efficiency of Marine Diesel Engine by Deep Waste Heat Recovery on the Base of Its Simulation Along the Route Line,” in
Integrated Computer Technologies in Mechanical Engineering
,
Advances in Intelligent Systems and Computing
,
Springer, Cham
. 1113, edited by
Nechyporuk
M.
, et. al.
(
2020
), pp.
337
350
.
35.
S.
Lai
and
C.
Hui
,
Appl Energy
87
,
2868
2880
(
2010
).
36.
S.A.
Tassou
,
Y.T.
Ge
,
A.
Hadawey
and
D.
Marriott
,
Appl. Therm. Eng.
31
,
147
156
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.