Let G = (V, E) be a graph. A function f: V → {0, 1} of the graph G is called a Biconditional cordial labeling of G if an induced edge function f*: E → {0, 1} defined by f*(uv)={ 1,iff(u)=f(v)0,iff(u)f(v) satisfies the following two conditions.

In this manuscript, we prove the existence of the Biconditional cordial labeling for complete bipartite graph, book graph with triangular pages, sunflower graph and web graph.

1.
Bloom
G. S.
and
Hsu
D. F.
,
On Graceful Digraphs and a Problem in Network Addressing
,
Congr, Number
,
35
,
91
103
,
1982
.
2.
Cahit
I.
,
On Cordial and 3-Equitable Labeling of Graph
,
Utilitas Math
,
370
,
189
198
,
1990
.
3.
Gallian
J. A.
,
A Dynamic Survey of Graph Labeling
,
Electronic Journal of Combinatories
,
17
,
DS6
,
2019
.
4.
Harary
F.
,
Graph Theory
,
Addison Wesley
,
1972
.
5.
Lakshmi Prasana
N.
,
Saravanthi
K.
,
Nagalla
Sudhakar
,
Applications of Graph Labeling in Major Areas of computing science
.
International Journal of Research in Computer and Communication Technology
, Vol.
3
, No.
8
,
2014
.
6.
Murali
B. J.
,
Thirusangu
K.
,
Madura
Meenakshi
R.,
Biconditional Cordial Labeling of Cycles
,
International Journal of Applied Engineering Research
, Vol.
10
, No.
80
,
188
191
,
2015
.
7.
Murali
B. J.
,
Thirusangu
K.
,
Balamurugan
B. J.
,
Biconditional Cordial Labeling of Ladder Graph and K2 + nK1 Graph
,
International Journal of Control Theory and Applications
, Vol.
9
, No.
51
,
37
45
,
2016
.
8.
Murali
B. J.
,
Thirusangu
K.
,
Balamurugan
B. J.
,
Combination Cordial Labeling of Flower Graphs and Corona Graph
Vol.
117
, No.
11
,
45
51
,
2017
.
9.
Nedumaran
P.
,
Thirusangu
K.
,
Celin
Mary
,
1-Near Mean Cordial and Biconditional Cordial Labeling of Certain Classes of Graphs
,
International Journal of Pure and Applied Mathematics
, Vol.
117
, No.
12
,
297
307
,
2017
.
10.
Rosa
A.
, On Certin Valuations of the Vertices of a Graph, In Theory of Graphs (Internat. Sympos. Rome.
1966
),
Gordan and Breach
,
Newyork, Dunod, Paris
,
349
359
,
1967
.
11.
West
D. B.
,
Introduction to Graph Theory
,
PHI Learning Private Limited
, 2nd Edition,
2009
.
This content is only available via PDF.
You do not currently have access to this content.