Novel bio-inspired nanoarchitectured materials with surface functionalized properties have potential applications in various fields. Polymeric porous nanomaterials/particles/capsules are taking as a challenging task for surface porosity as payload for anticancer drugs and nanomedicines for drug delivery and cancer theranostics. The block copolymer of [(PLGA)-b-(PNIPAM)] is bio-inspired along with biodegradable, biocompatible and bio-safe (3B) polymers and these can help to design and develop potential carrier nanomaterial for biomedical and biotechnological applications. The polymers like [(PLGA)-b-(PNIPAM)] follow 3B formula and can easily functionalized. The surface functionalization of nanomaterial or particle or capsule surface profile can be modified based in the desired applications. The active functional groups present in the polymers lead to the self-assembly followed by the net-work formation capabilities. The interactions between polymer and inorganic, organic and metal nanoparticles has been examined through the following characterization tools FTIR, SEM, and TEM for functional groups, size, shape, morphology, surface profile. The PXRD, DSC, TGA has been performed for physical properties. The spreical capsules with size of ∼720 nm (in diameter) has been engineered and used drug delivery and release studies. The confocal microscopic imagning corroborates the ruptured and inhibited HepG2 cellular morphology with 62% inhibtion after 24 treatment with anticacner drug Toxol. These surface functionalized nanoparticles are recommended for drug delivery and for various cancer therapeutics.

1.
C.
Amgoth
,
S.
Joshi
,
G.
Dharmapuri
,
Materials Science and Engineering-C,
92
,
790
(
2018
).
2.
K. C.
Barick
,
S.
Nigam
and
D.
Bahadur
,
J. Mater. Chem.B.
20
,
6446
(
2010
).
3.
Q.
Yu
,
Y.
Wang
,
R.
Mei
,
Y.
Yin
,
J.
You
, and
L.
Chen
,
Anal. Chem.
91
,
5270
(
2019
).
4.
C.
Amgoth
,
G.
Dharmapuri
,
Nanotechnology,
27
,
125101
(
2016
).
5.
R.
Gupta
and
B.
Rai
,
Sci. Rep.,
7
,
45292
(
2017
).
6.
C.
Amgoth
,
A.
Singh
,
R.
Santhosh
,
S.
Yumnam
,
P.
Mangla
, R.,
T.
Guping
,
M.
Banavoth
,
RSC Adv.
,
9
,
33931
(
2019
).
7.
J.
Ge
,
J.
Lei
, and
R. N.
Zare
,
Nature Nanotechnology,
7
,
428
(
2012
).
8.
R.
Mei
,
Y.
Wang
,
W.
Liu
, and
L.
Chen
,
ACS Applied Materials and Interfaces
,
10
,
23606
(
2019
).
9.
C.
Amgoth
,
M.
Lakavathu
,
S.
Joshi
,
Bull. Mater. Sci.
41
,
142
(
2018
).
10.
J.
Yao
,
Y.
Ruan
,
T.
Zhai
,
J.
Guan
,
G.
Tang
,
H.
Li
,
S.
Dai
,
Polymer
,
52
,
3396
(
2011
).
11.
V.
Bastos
,
I.F.
Duarte
,
C.
Santos
,
H.
Oliveira
,
J Nanopart Res.,
19
,
163
(
2017
).
12.
C.
Amgoth
,
S.
Joshi
,
Mater. Res. Express,
4
,
105306
(
2017
).
13.
K.Wang Q.
Hu
,
W.
Zhu
,
M.
Zhao
,
Y.
Ping
,
G.
Tang
,
Adv Funct Mater,
25
,
3380
(
2015
).
14.
A.R.
Rodriguez
,
J.R.
Kramer
,
T.J.
Deming
,
Biomacromolecules,
14
,
3610
(
2013
).
15.
H.
Freichels
,
R.
Jerome
,
C.
Jerome
,
Carbohydr Polym.,
86
,
1093
(
2011
).
16.
B.Y.
Ping
,
C.
Liu
,
G.
Tang
,
J.
Li
,
J.
Li
,
W.
Yang
, and
F.
Xu
,
Adv. Funct. Mater.,
20
,
3106
(
2010
).
17.
C.
Argyo
,
V.
Weiss
,
C.
Brauchle
,
T.
Bein
,
Chem Mater.,
26
,
435
(
2014
).
18.
W.
Zhang
,
Y.
Wang
,
X.
Sun
,
W.
Wang
and
L.
Chen
,
Nanoscale
,
6
,
14514
(
2014
).
19.
C.
Yang
,
M.
Bian
and
Z.
Yang
,
Biomater. Sci.,
2
,
651
(
2014
).
20.
K.
Cho
,
X.
Wang
,
S.
Nie
,
Z.G.
Chen
,
D.M.
Shin
,
Clin Cancer Res,
14
,
1310
(
2008
).
This content is only available via PDF.
You do not currently have access to this content.