The first-principles calculation has been performed to study the electronic and thermoelectric transport properties of Zr1-xHfxNiPb (x=0.12) compound using full potential linearized augmented plane wave (FPLAPW) method based on Density functional theory (DFT) as implemented in WIEN2k. The optimized value of lattice parameter is in excellent agreement with available data. Various thermoelectric properties such as Seebeck coefficient, electrical conductivity, Power factor and electronic thermal conductivity are studied in wide range of temperature from 100-1000 K. The value of electrical conductivity increases from 0.025x1020Scm-1sec-1 for ZrNiPb to 0.036x1020Scm−1sec-1(x=0.12) at room temperature on Hf substitution. There is a small variation of power factor from 1.56x1011WK−2cm-1sec-1(x=0) to 1.62x1011WK−2cm−1sec-1 (x=0.12) at room temperature. The Hf substitution also decreases the thermal conductivity, which is favorable condition to obtain large value of figure of merit ZT. The increase in the value of power factor and decrease in the value of thermal conductivity show that Hf doped ZrNiPb acts as good thermoelectric material.

1.
M.
Zebarjadi
,
K.
Esfarjani
,
M.S.
Dresselhaus
,
Z.F.
Ren
,
G.
Chen
,
Energy Environ. Sci.
5
,
5147
5153
(
2012
).
2.
Riffat
,
S. B.
&
Ma
,
X.
Thermoelectrics: a review of present and potential applications
.
Appl. Therm. Eng.
23
,
913
(
2003
).
3.
Z.
Fan
,
J.
Zheng
,
H. Q.
Wang
,
J. C.
Zheng
,
Nanoscale Res. Lett.
7
,
1931
7573
(
2012
).
4.
L.
Chen
,
X.
Zeng
,
T. M.
Tritt
,
S. J.
Poon
,
J. Electron. Mater.
45
(
11
),
5554
5560
(
2016
).
5.
L.
Huang
,
Q.
Zhang
,
B.
Yuan
,
X.
Lai
,
X.
Yan
,
Z.
Ren
,
Mater. Res. Bull.
76
,
107
112
(
2016
).
6.
B.
Yu
,
W.
Liu
,
S.
Chen
,
H.
Wang
,
G.
Chen
and
Z.
Ren
,
Nano energy
1
,
472
478
(
2012
).
7.
Nisha
,
K.
Kaur
,
J.
Thakur
,
M. K.
Kashyap
,
H. S.
Saini
,
AIP Conference Proceedings
2115
,
030426
(
2019
).
8.
S. R.
Culp
,
J. W.
Simonson
,
S. J.
Poon
,
V.
Ponnaambalam
,
Appl. Phys. Lett.
93
(
2
),
022105
(
2008
).
9.
T.
Graf
,
C.
Felserans
S. S.
Parkin
,
Progess in solid state chemistry
39
,
1
50
(
2011
).
11.
R.
Gautier
,
X.
Zhang
,
L.
Hu
,
L.
Yu
,
A.
Zunger
,
Nat. Chem.
7
,
308
316
(
2015
).
12.
J.
Mao
,
J.
Zhou
,
H.
Zhu
,
H.
Zhang
,
R.
He
,
G.
Chen
,
Z.
Ren
,
Chemistry of Materials
29
,
867
872
(
2017
).
13.
G.
Wang
,
D.
Wang
,
Journal of Alloys and Compounds
682
,
375
380
(
2016
).
14.
Hohenberg
P
and
Kohn
W
,
Phys. Rev. B
136
,
B864
(
1964
).
15.
P.
Blaha
,
K.
Schwarz
,
G.
Madsen
,
D.
Kavinscka
and
J.
Luitz
,
R.
Laskowsi
,
F.
Tran
and
L. D.
Marks
,WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (
Karlheinz Schwarz, Techn. Universitat Wien
,
Austria
),
2018
. ISBN 3-9501031-1-2.
16.
G. K.
Madsen
,
D. J.
Singh
,
Comput. Phys. Commun.
175
(
1
),
67
71
(
2006
).
17.
I.
Galanakis
,
P.
Mavropoulos
,
P.H.
Dederichs
,
J. Phys. D: Appl. Phys.
39
(
5
),
705
711
(
2005
).
This content is only available via PDF.
You do not currently have access to this content.