Let G = (V, E) be a simple graph. Let f be a map from V(G) to {1,2}. We associate two integers P = f(u)f(v) and , where f(u) ≥ f(v). For each edge uv assign the label . Then f is called PD mean cordial labeling if |vf(i) – vf(j)| ≤ 1 and |ef(i) – ef(j)| ≤ 1, i, j ∈ {1, 2}, where vf(x) and ef(x) denote the number of vertices and edges labelled with x (x = 1,2) respectively. A graph G is PD mean cordial if it satisfies PD mean cordial labeling. In this paper we study the PD mean cordial labeling of some tree graphs.
Topics
Graph theory
REFERENCES
1.
Albert
William
, Indra
Rajasingh
and S.
Roy
, “Mean Cordial Labeling of Certain Graphs
”, Journal of Computer and Mathematical Sciences
, 4
, no. 4
, 274
–28
(2013
).2.
I.
Cahit
, “Cordial Graphs: A weaker version of Graceful and Harmonious Graphs
”, Ars combin.
, vol 23
201
–207
(1987
).3.
J. A.
Gallian
, “A Dynamic Survey of Graph Labeling
”, The Electronic journal of Combinatorics
, 17
(2018
), # DS6
.4.
G. C.
Lau
, H. H.
Chu
, N.
Suhadak
, F. Y.
Foo
, H. K.
Ng
, “On SD-Prime Cordial Graphs
”, International Journal of Pure and Applied Mathematics
, 106
(4
), 1017
–1028
(2016
).5.
Raja
Poraj
, Muthirulan
Sivakumar
, Murugesan
Sundaram
, “Mean Cordial Labeling of Graphs
”, Open Journal of Discrete Mathematics
, 145
–148
(2012
).
This content is only available via PDF.
© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.