Let G = (V, E) be a simple graph. Let f be a map from V(G) to {1,2}. We associate two integers P = f(u)f(v) and D=f(u)f(v), where f(u) ≥ f(v). For each edge uv assign the label P+D2. Then f is called PD mean cordial labeling if |vf(i) – vf(j)| ≤ 1 and |ef(i) – ef(j)| ≤ 1, i, j ∈ {1, 2}, where vf(x) and ef(x) denote the number of vertices and edges labelled with x (x = 1,2) respectively. A graph G is PD mean cordial if it satisfies PD mean cordial labeling. In this paper we study the PD mean cordial labeling of some tree graphs.

1.
Albert
William
,
Indra
Rajasingh
and
S.
Roy
, “
Mean Cordial Labeling of Certain Graphs
”,
Journal of Computer and Mathematical Sciences
,
4
, no.
4
,
274
28
(
2013
).
2.
I.
Cahit
, “
Cordial Graphs: A weaker version of Graceful and Harmonious Graphs
”,
Ars combin.
, vol
23
201
207
(
1987
).
3.
J. A.
Gallian
, “
A Dynamic Survey of Graph Labeling
”,
The Electronic journal of Combinatorics
,
17
(
2018
), #
DS6
.
4.
G. C.
Lau
,
H. H.
Chu
,
N.
Suhadak
,
F. Y.
Foo
,
H. K.
Ng
, “
On SD-Prime Cordial Graphs
”,
International Journal of Pure and Applied Mathematics
,
106
(
4
),
1017
1028
(
2016
).
5.
Raja
Poraj
,
Muthirulan
Sivakumar
,
Murugesan
Sundaram
, “
Mean Cordial Labeling of Graphs
”,
Open Journal of Discrete Mathematics
,
145
148
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.