We theoretically study electronic and thermoelectric properties of two-dimensional hydrogenated borophene (”boro-phane”). We show that, according to the first-principles calculation, hydrogenated borophene is semimetallic, with two bands meeting at a single point at the Fermi level. The thermoelectric properties evaluated by using the Boltzmann equation with a constant relaxation time approximation (CRTA). At room temperature, we obtain large power factor for electron doping regime. Therefore, appropriate doping to this material can enhance its thermoelectric efficiency.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
669
(
2004
).
2.
M.
Nakhaee
,
S.
Ketabi
, and
F.
Peeters
,
Physical Review B
97
, p.
125424
(
2018
).
3.
P.
Vogt
,
P.
De Padova
,
C.
Quaresima
,
J.
Avila
,
E.
Frantzeskakis
,
M. C.
Asensio
,
A.
Resta
,
B.
Ealet
, and
G.
Le Lay
,
Physical Review Letters
108
, p.
155501
(
2012
).
4.
M. O.
NE
,
M.
Boujnah
,
A.
Benyoussef
,
A.
El Kenz
, et al,
Optik
158
,
693
698
(
2018
).
5.
F.-f.
Zhu
,
W.-j.
Chen
,
Y.
Xu
,
C.-l.
Gao
,
D.-d.
Guan
,
C.-h.
Liu
,
D.
Qian
,
S.-C.
Zhang
, and
J.-f.
Jia
,
Nature Materials
14
, p.
1020
(
2015
).
6.
A. J.
Mannix
,
X.-F.
Zhou
,
B.
Kiraly
,
J. D.
Wood
,
D.
Alducin
,
B. D.
Myers
,
X.
Liu
,
B. L.
Fisher
,
U.
Santiago
,
J. R.
Guest
, et al,
Science
350
,
1513
1516
(
2015
).
7.
N. G.
Szwacki
,
Nanoscale Research Letters
3
, p.
49
(
2008
).
8.
Z. A.
Piazza
,
H.-S.
Hu
,
W.-L.
Li
,
Y.-F.
Zhao
,
J.
Li
, and
L.-S.
Wang
,
Nature Communications
5
, p.
3113
(
2014
).
9.
A.
Lopez-Bezanilla
and
P. B.
Littlewood
,
Physical Review B
93
, p.
241405
(
2016
).
10.
M.
Martinez-Canales
,
T. R.
Galeev
,
A. I.
Boldyrev
, and
C. J.
Pickard
,
Physical Review B
96
, p.
195442
(
2017
).
11.
L.-C.
Xu
,
A.
Du
, and
L.
Kou
,
Physical Chemistry Chemical Physics
18
,
27284
27289
(
2016
).
12.
H. J.
Goldsmid
,
Introduction to thermoelectricity
, Vol.
121
(
Springer
,
2010
).
13.
M.
Markov
,
X.
Hu
,
H.-C.
Liu
,
N.
Liu
,
S. J.
Poon
,
K.
Esfarjani
, and
M.
Zebarjadi
,
Scientific Reports
8
, p.
9876
(
2018
).
14.
D.
Vanderbilt
,
Physical Review B
41
, p.
7892
(
1990
).
15.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
Journal of Physics: Condensed Matter
21
, p.
395502
(19pp) (
2009
).
16.
Z.
Wang
,
T.-Y.
,
H.-Q.
Wang
,
Y. P.
Feng
, and
J.-C.
Zheng
,
Scientific Reports
7
, p.
609
(
2017
).
17.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Physical Review Letters
77
, p.
3865
(
1996
).
18.
G. K.
Madsen
and
D. J.
Singh
,
Computer Physics Communications
175
,
67
71
(
2006
).
19.
M. G.
Holland
,
Phys. Rev.
132
,
2461
2471Dec
(
1963
).
This content is only available via PDF.
You do not currently have access to this content.