A thermomagnetic analysis is a study of how a material reacts to the change in temperature. The analysis is conducted by cooling and/or heating the material and observing the change of magnetic moment. Through this observation, the Curie Temperature of a material can be obtained. This Curie Temperature is used to estimate the magnetic minerals contained in samples e.g., rocks, sediments, soils. This paper introduces THERMITS, a MATLAB code for analyzing the thermomagnetic data, which aims to replicate as well as make improvements on existing thermomagnetic analysis tools in MATLAB environment. This MATLAB code will generate three plots, which are thermomagnetic data (magnetic moment vs. temperature), 1st derivative, and 2nd derivative. These derivatives are generated in order to estimate the Curie temperature. The estimation is done by finding the highest value of the 2nd derivative curve which represents the maximum curvature of thermomagnetic data. To improve the accuracy of Curie temperature estimation, this code also provides a smoothing and estimation boundary. Smoothing is important to reduce the variability of the derivative curve so that the Curie temperature can be estimated correctly. Meanwhile, estimation boundary is needed to bound the estimation so that it will not conclude the outer boundary for the estimation; which often has instable data caused by the instrument error.

1.
M.
Mariyanto
,
M.F.
Amir
,
W.
Utama
,
A.M.
Hamdan
,
S.
Bijaksana
,
A.
Pratama
,
R.
Yunginger
, and
S.
Sudarningsih
,
Data Br.
25
,
104092
(
2019
).
2.
M.
Mariyanto
,
M.F.
Amir
,
W.
Utama
,
A.M.
Hamdan
,
S.
Bijaksana
,
A.
Pratama
,
R.
Yunginger
, and
S.
Sudarningsih
,
Sci. Total Environ.
675
,
632
(
2019
).
3.
M.
Mariyanto
,
A.S.
Bahri
,
W.
Utama
,
W.
Lestari
,
L.
Silvia
,
T.
Lestyowati
,
M.K.
Anwar
,
W.
Ariffiyanto
,
A.I.
Hibatullah
, and
M.F.
Amir
,
J. Penelit. Fis. Dan Apl.
8
,
33
(
2018
).
4.
M.
Mariyanto
and
S.
Bijaksana
, in
AIP Conf. Proc.
(
2017
), p.
030045
.
5.
G.C.
Novala
,
Sudarningsih
,
K.H.
Kirana
,
S.J.
Fajar
,
Mariyanto
, and
S.
Bijaksana
,
J. Phys. Conf. Ser.
1204
,
012085
(
2019
).
6.
R.
Yunginger
,
S.
Bijaksana
,
D.
Dahrin
,
S.
Zulaikah
,
A.
Hafidz
,
K.
Kirana
,
S.
Sudarningsih
,
M.
Mariyanto
, and
S.
Fajar
,
Geosciences
8
,
116
(
2018
).
7.
S.
Bijaksana
,
R.
Yunginger
,
A.
Hafidz
, and
M.
Mariyanto
,
Data Br.
104348
(
2019
).
8.
H.
Hoshi
,
N.
Kamiya
, and
Y.
Kawakami
,
Isl. Arc
22
,
395
(
2013
).
9.
J.M.
Pareís
,
A.
Peírez-González
,
J.L.
Arsuaga
,
J.M. Bermúdez
De Castro
,
E.
Carbonell
, and
A.I.
Ortega
,
Archaeometry
52
,
882
(
2010
).
10.
M.A.
Di Vito
,
E.
Zanella
,
L.
Gurioli
,
R.
Lanza
,
R.
Sulpizio
,
J.
Bishop
,
E.
Tema
,
G.
Boenzi
, and
E.
Laforgia
,
Earth Planet. Sci. Lett.
277
,
408
(
2009
).
11.
R.J.
Musgrave
,
M.
Kars
, and
M.E.
Vega
,
J. Geophys. Res. Solid Earth 2018JB017277
(
2019
).
12.
B.M.
Moskowitz
,
Earth Planet. Sci. Lett.
53
,
84
(
1981
).
13.
K. V.
Popov
,
B.A.
Bazylev
,
V.P.
Shcherbakov
,
V.A.
Tsel'movich
, and
N.N.
Kononkova
,
Russ. J. Earth Sci.
15
,
1
(
2015
).
14.
P.
Grosseau
,
B.
Guilhot
, and
A.
Bachiorrini
,
XIV Convegno Naz. Di Calorimetria e Di Anlisi Termica, Udine Italy
280
(
1992
).
15.
D.
Jordanova
and
N.
Jordanova
,
Front. Earth Sci.
3
,
1
(
2016
).
16.
L.
Tauxe
,
Paleomagnetic Principles and Practice
(
Kluwer Academic Publishers
,
Dordrecht
,
2003
).
17.
T.
Hatakeyama
,
Earth, Planets Sp.
70, (2018
).
18.
R.F.
Mould
,
Curr. Oncol.
14
,
74
(
2007
).
19.
R.A.
Serra
,
T.
Ogasawara
, and
A.S.
Ogasawara
,
Quim. Nova
30
,
1545
(
2007
).
This content is only available via PDF.
You do not currently have access to this content.