Simulations for co-axial types are carried out in two types, namely the kind where the inner tube inserted into the resonator area and the second type of inner tube inserted through the thermoacoustic core. In the first type of co-axial simulation the acoustic power produced was much smaller compared to the kind of standing wave, while the second type of co-axial simulation obtained higher acoustic power compared to the type of standing wave. Performance simulation on the co-axial thermoacoustic engine (CoATE) with 25 mm inner tube diameter showed that the acoustic energy generated at 30.65 watts, 30.23 watts, 29.62 watts, 28.83 watts, and 27.85 watts for 580 mm, 530 mm and 480 mm, 430 mm, and 380 mm inner pipe, respectively.

1.
P. H.
Ceperley
, “
A pistonless Stirling engine—The traveling wave heat engine
,”
J. Acoust. Soc. Am.
, vol.
66
, no.
5
, pp.
1508
1513
,
1979
.
2.
T.
Yazaki
,
A.
Iwata
,
T.
Maekawa
, and
A.
Tominaga
, “
Traveling wave thermoacoustic engine in a looped tube
,”
Phys. Rev. Lett.
, vol.
81
, no.
15
, pp.
3128
3131
,
1998
.
3.
S.
Backhaus
and
G. W.
Swift
, “
A thermoacoustic-Stirling heat engine: Detailed study
,”
J. Acoust. Soc. Am.
, vol.
107
, no.
6
, pp.
3148
3166
,
2000
.
4.
M. E. H.
Tijani
and
S.
Spoelstra
, “
A high performance thermoacoustic engine
,”
J. Appl. Phys.
, vol.
110
, no.
9
,
2011
.
5.
K.
Shibata
,
S. I.
Sakamoto
,
Y.
Nakano
, and
Y.
Watanabe
, “
Relationship between quality value and temperature ratio for step-shape thermoacoustic system
,”
Jpn. J. Appl. Phys.
, vol.
52
, no.
7
PART 2,
2013
.
6.
J.
Morii
,
T.
Biwa
, and
T.
Yazaki
, “
Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine
,”
Rev. Sci. Instrum.
, vol.
85
, no.
9
,
2014
.
7.
M. E. H.
Tijani
and
S.
Spoelstra
, “
Study of a coaxial thermoacoustic-Stirling cooler
,”
Cryogenics (Guildf).
, vol.
48
, no.
1–2
, pp.
77
82
,
2008
.
8.
G.
Takeuchi
,
S.-I.
Sakamoto
,
K.
Idoki
, and
Y.
Watanabe
, “
A prototype thermoacoustic system using coaxial geometry for traveling wave phasing
,” in
Forum Acusticum
,
2014
, pp.
2
4
.
9.
G.
Takeuchi
,
S.
Sakamoto
, and
Y.
Watanabe
, “
Effects of inner tube-diameter on a coaxial thermoacoustic engine
,” vol.
35
, pp.
465
466
,
2014
.
10.
Y.
Takeyama
,
S. ichi
Sakamoto
, and
Y.
Watanabe
, “
Study on the setting position of a prime mover in the coaxial-type thermoacoustic cooling system: Comparison with the straight-tube-type thermoacoustic system
,”
Jpn. J. Appl. Phys.
, vol.
57
, no.
7
,
2018
.
11.
B.
Chen
,
F.
Jiao
,
K.
Ho
,
M.
Yang
,
S.
Tian
, and
H.
Li
, “
Numerical Analysis of Acoustic Field in a 2-stage Traveling Wave Thermoacoustic Engine Based on DeltaEC
,”
Energy Procedia
, vol.
105
, pp.
4615
4620
,
2017
.
12.
P.
Saechan
and
A. J.
Jaworski
, “
Numerical studies of co-axial travelling-wave thermoacoustic cooler powered by standing-wave thermoacoustic engine
,”
Renew. Energy
, vol.
139
, pp.
600
610
,
2019
.
13.
D.
Potente
,
D.
Design
,
A.
Consultants
, and
Sydney
, “
General Design Principles for an Automotive Muffler INTRODUCTION TO AN AUTOMOTIVE
,”
Proceeding Acoust.
, no. November, pp.
153
158
,
2005
.
This content is only available via PDF.
You do not currently have access to this content.