Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Ti-6Al-6Mo shows good hot workability, mechanical behavior and corrosion- resistant. Therefore, this alloy has a potential used as a biomaterial implant. The effect of various pre-heating time and 88 % reduction of the hot rolling process was conducted to Ti-6Al-6Mo alloy. The study aim is to investigate the characteristic of α phase in Ti-6Al-6Mo alloy after pre-heating and heavy hot rolling. The homogenized Ti-6Al-6Mo alloy was pre- heated at 1000 °C with a various holding time of 15, 30, and 60 min and followed by 88 % hot rolling. Microstructures of this alloy observed by optical microscopy (OM) and scanning electron microscopy (SEM). The hardness of Ti-6Al-6Mo alloy after the process was examined using Rockwell hardness testing machine scale C. The results showed the α phase characteristic was changed its morphology. The α phase leading to a globular structure and it’s increasing the hardness due to increasing pre-heating time.

1.
Y.
Li
,
C.
Yang
,
H.
Zhao
,
S.
Qu
,
X.
Li
,
Y.
Li
,
Mater.
7
(
3
),
1709
1800
(
2014
).
2.
R. T.
Bothe
,
L. E.
Beaton
, and
H. A.
Davenport
,
Surg. Gynecol. Obstet.
71
,
598
602
(
1940
).
3.
B. P.
Bannon
and
E. E.
Mild
, Titanium Alloys for Biomaterial Application: An Overview. Titanium Alloys in Surgical Implants (
ASTM
,
Philadelphia, USA
,
1983
), pp.
7
15
.
4.
V.
Oliveira
,
R. R.
Chaves
,
R.
Bertazzoli
,
R.
Caram
,
Braz. J. Chem. Eng.
17
,
326
333
(
1998
).
5.
U.
Zwicker
,
K.
Buhler
,
R.
Muller
,
H.
Beck
,
H. J.
Schmid
,
J.
Ferstl
, “Mechanical Properties and Tissue Reactions of a Titanium Alloy for Implant Material,” In
Biological Tissue Reactions of A Titanium Alloy
, (
Metallurgical Society of AIME
,
New York, USA
,
1980
), pp.
505
514
.
6.
M.
Long
,
H. J.
Rack
,
Biomaterials
19
,
1621
1639
(
1998
).
7.
M.
Niinomi
,
Metal. Mater. Trans. A.
33
,
477
486
(
2002
).
8.
9.
C.
Li
,
D. G.
Lee
,
X.
Mi
,
W.
Ye
,
S.
Hui
, and
Y.
Lee
.
Metal. Mater. Trans. A.
47
,
2454
(
2016
).
10.
O. M.
Ivashishin
,
P. E.
Markovsky
,
S. L.
Semiatin
,
C. H.
Ward
,
Mater. Sci. Eng. A
405
,
296
305
(
2005
).
11.
O. M.
Ivashishin
,
P. E.
Markovsky
,
Y. V.
Matviychuck
,
S. L.
Semiatin
,
C. H.
Ward
,
S.
Fox
,
J. Alloys Compd.
457
,
296
309
(
2008
).
12.
Z.
Fengying
,
C.
Hong
,
X.
Yiku
,
Z.
Xuemin
.
Rare. Metal. Mat. Eng.
42
(
7
),
1332
1336
(
2013
).
13.
T.
Schmoelzer
,
S.
Mayer
,
F.
Haupt
,
G. A.
Zickler
,
C.
Sailer
,
L.
Lottermoser
,
V.
Güther
,
K. D.
Liss
, and
H.
Clemens
, “Phase transition and ordering temperatures of TiAl-Mo alloys investigated by in-situ diffraction experiments,” In
Materials Science Forum 654-656
, (
Trans Tech Publications, Ltd
,
Switzerland
,
2010
),
456
459
.
14.
Y.
Lu
,
J.
Yamada
,
J.
Nakamura
,
K.
Yoshimi
, and
H.
Kato
,
J. Alloys Compd.
696
,
130
35
(
2017
).
15.
F.
Rokhmanto
,
G.
Senopati
,
C.
Sutowo
,
Prosiding Seminar Nasional Sains dan Teknologi
TM-024
,
1
5
(
2016
); (in Indonesia).
16.
C.
Sutowo
,
F.
Rokhmanto
,
G.
Senopati
, and
K. A.
Ilman
.
Prosiding Seminar Nasional Sains dan Teknologi TM – 032
,
1
5
(
2016
); (in Indonesia).
17.
C.
Sutowo
,
F.
Rokhmanto
, and
G.
Senopati
.
Widyariset
3
(
1
),
47
54
(
2017
); (in Indonesia)..
18.
L.
Bolzoni
,
E.M.
Ruiz-Navas
,
E.
Neubauer
,
E.
Gordo
,
J. Mech. Behav. Biomed. Mater.
9
,
91
99
(
2012
).
19.
P. W.
Peng
,
K. L.
Ou
,
C. Y.
Chao
,
Y. N.
Pan
, and
C. H.
Wang
,
J. Alloys Compd.
490
,
661
666
(
2010
).
20.
L. M.
Gammon
,
R. D.
Briggs
,
J. M.
Packard
,
K. W.
Batson
,
R.
Boyer
, and
C. W.
Domby
,
Metallography and Microstructure of Titanium and Its Alloys, Metallography and Microstructure
9
, (
ASM Handbook, ASM International
,
Ohio
,
2004
), pp.
899
917
.
This content is only available via PDF.
You do not currently have access to this content.