The electronic and optical properties of nickel doped potassium titanate (KTO) nanostructures are studied theoretically by using density functional theory (DFT). The crystal structure for the nickel doped potassium titanate nanostructures are compared with the undoped samples of the same which is used for calculating the band gap energies and optical spectra. The plane-wave-based density functional theory (DFT) calculations are performed using the Quantumwise ATK version 11.8.2 with local-density approximation(LDA), generalized gradient approximation (GGA) for both the undoped and nickel doped potassium titanate nanostrucrures. The band structure calculated for doped potassium titanate is found to be 0 eV for all the approximations. However, the band structure of undoped potassium titanate calculated by LDA, GGA is found to vary from 1.2 eV to 8 eV. Therefore, it can be said that the doping of Nickel in the pure sample causes a decrease in band gap energy of the materials. The optical spectra of doped and undoped potassium titanate nanostructures are obtained and it can be seen that the variation of band gap energy values derived from the optical spectra is similar to those calculated from the band structure. The calculations with GGA, LDA functional are also compared with the existing theoretical & experimental data which shows a reasonably good agreement with the values calculated by using other methods.

1.
Kohn-Sham
,
Haoyu S.
Yu
,
Shaohong L.
Li
, and
Donald G.
Truhlar
,
J. Chem. Phys.
145
,
1
23
(
2016
).
2.
Walter
Kohn
,
Rev. Mod. Phys.
71
,
1253
1266
(
1999
).
3.
Svetlana
Kotochigova
,
Zachary H.
Levine
,
Eric L. Shirley M. D.
Stiles
, and
Charles W.
Clark
,
Phys. Rev. A
56
,
191
199
(
1997
).
4.
Mike
Entwistle
,
Matthew
Hodgson
,
Jack
Wetherell
,
Bradley
Longstaff
,
James
Ramsden
,
Rex
Godby
,
Phys. Rev.B.
94
,
1
11
(
2016
).
5.
Axel D.
Becke
,
J. Chem. Phys.
98
,
1372
1377
(
1993
).
6.
Axel D.
Becke
,
J. Chem. Phys.
140
,
1
18
(
2014
).
7.
Xinlei
Hua
,
Xiaojie
Chen
, and
W. A. Goddard
III
,
Physical Review B
55
,
16103
16109
(
1997
).
8.
M.
Sudheer
,
K. H.
Vishwanathan
,
K.
Raju
,
Thirumaleshwara
Bhat
,
Journal of Reinforced Plastics and Composites
32
,
1177
1187
(
2013
).
9.
Neepa T.
Maitra
,
J. Chemical Physics
144
,
1
16
(
2016
).
10.
Tanja
van Mourik
,
Michael
Bühl
, and
Marie-Pierre
Gaigeot
,
Phil. Trans. R. Soc. A
372
,
1
5
(
2014
).
11.
M. L.
Chen
,
J. H.
Chen
,
Y.Q.
Li
,
J. H.
Deng
,
Materials Research Innovations
19
,
S9-2
S9-5
(
2015
).
12.
Issa
Yavari
,
Aliyeh
Khajeh-Khezri
,
Rahman
Aliveisi
,
Mohammad Reza
Halvagar
,
J. Physical Organic Chemistry
31
,
1
12
(
2018
).
13.
Kieron
Burke
,
J. Chem. Phys.
136
,
1
9
(
2012
).
14.
W.
Kohn
,
A. D.
Becke
,
R. G.
Parr
,
J. Phys. Chem.
100
,
12974
12980
(
1996
).
15.
R. O.
Jones
,
Rev. Mod. Phys.
87
,
897
923
(
2015
).
16.
Nathan
Argaman
,
American Journal of Physics
68
,
69
79
(
2000
).
17.
K.
Zou
,
Sohrab
Ismail-Beigi
,
Kim
Kisslinger
,
Xuan
Shen
,
Dong
Su
,
F. J.
Walker
, and
C. H.
Ahn
,
Applied Physics Letters
105
,
1
7
(
2015
).
18.
Maria A.
Gomez
,
Saryu
Jindal
,
Katharyn M.
Fletcher
,
Leigh S.
Foster
,
Nanna Dufie A.
Addo
,
Debbie
Valentin
,
Cristina
Ghenoiu
&
Abigail
Hamilton
,
J. Chem. Phys.
126
,
1
6
(
2007
).
19.
Sung Gu
Kang
and
David S.
Sholl
,
J. Chemical Physics
,
141
,
1
6
(
2014
).
20.
Tupitsyn
,
Deineka
,
V. A.
Trepakov*
, and
L.
Jastrabik
,
S. E.
Kapphan
,
Physical Review B
64
,
1
6
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.