Dye Sensitized Solar Cell (DSSC) performance is mainly influenced by the amount of dye absorbed in the working electrode. The amount of dye absorbed is influenced by several factors, including the immersing time of working electrode in the dye. This study aims to obtain the effect of the immersing time of working electrodes on the efficiency of DSSC with C4 plant chlorophyll of corn leaves as a sensitizer. The working electrode used was a TiO2 semiconductor. Dye is made from 1 g of corn leaves which is dissolved in 50 mL of acetone. The immersing time variations used were 1, 6, 12, 24, and 48 hours. The characterization applied were a UV-Vis spectrophotometer to measure the absorbance of the solution and absorbance of dye-coated work electrode layers, Keithley I-V Meter to measure the efficiency and conductivity of dye solution. The absorbance of the solution from the dye chlorophyll of corn leaves is located at a wavelength of 450 nm - 500 nm and 650 nm - 670 nm. The absorbance of the coating from the working electrode soaked in chlorophyll dye from immersion 1 hour increased to immersion 6 hours and then decreased continuously at immersion 12, 24 and 48 hours. The efficiency and conductivity results showed a similar trend to the absorbance of the working electrode layer. The highest efficiency was obtained at immersing time of 6 hours, which was 9.12 × 10-2%. The highest conductivity was obtained at immersing time of 6 hours which was 8.9 Ω−1m−1.

1.
R.
Syafinar
,
N.
Gomesh
,
M.
Irwanto
,
M.
Fareq
, and
Y. M.
Irwan
,
Energy Procedia
79
,
896
902
(
2015
).
2.
M. R.
Narayan
,
Renewable and Sustainable Energy Reviews
16
,
208
215
(
2012
).
3.
S.
Shalini
,
R.
Balasundaraprabhu
,
S.
Prasanna
,
T. K.
Mallick
, and
S.
Senthilarasu
,
Renewable and Sustainable Energy Reviews
51
,
1306
1325
(
2015
).
4.
Y.
Li
,
H.
Li
,
P.
Song
, and
C.
Sun
,
Journal of Nanomaterials
,
139382
(
2015
).
5.
B. I.
Adamu
,
G.
Babaji
,
M. H.
Ali
,
C. E.
Ndikilar
,
A. B.
Suleiman
, and
S. S.
Abdullahi
,
Int. J. Pure Appl. Sci.
6
,
36
45
(
2016
).
6.
P.
Gu
,
D.
Yang
,
X.
Zhu
,
H.
Sun
, and
J.
Li
,
Chemical Physics Letter
693
,
16
22
(
2018
).
7.
M. K.
Hossain
,
M. F.
Pervez
,
S.
Tayyaba
,
M. J.
Uddin
,
A. A.
Mortuza
,
M. N. H.
Mia
, …., and
M. A.
Khan
,
Materials Science-Poland
35
,
816
823
(
2017
).
8.
A.
Torchani
,
S.
Saadoui
,
R.
Gharbi
, and
M.
Fathallah
,
Current Applied Physics
15
,
307
312
(
2015
).
9.
X.
Mao
,
R.
Zhou
,
S.
Zhang
,
L.
Ding
,
L.
Wan
,
S.
Qin
,
Z.
Chen
,
J.
Xu
, and
S.
Miao
,
Sci. Rep.
6
,
19390
(
2016
).
10.
J.
Uddin
,
J. M. M.
Islam
,
E.
Karim
,
S. M. M.
Khan
,
S.
Akhter
,
E.
Hoque
, and
M. A.
Khan
,
Int. J. Thin. Fil. Sci. Tec.
4
,
141
146
(
2015
).
11.
A. K.
Alaba
,
IOSR Journal of Applied Physics (IOSR-JAP)
9
,
27
34
(
2017
).
12.
A. H.
Ahliha
,
F.
Nurosyid
,
A.
Supriyanto
, and
T.
Kusumaningsih
,
Materials Science and Engineering
333
,
012018
(
2018
).
13.
D. D.
Pratiwi
,
F.
Nurosyid
,
A.
Supriyanto
, and
R.
Suryana
,
Journal of Physics Conference Series
776
,
012007
(
2016
).
14.
S. R.
Alfidharisti
,
F.
Nurosyid
,
A.
Supriyanto
,
R.
Suryana
, and
Y.
Iriani
,
Journal of Physics Conference Series
909
,
012026
(
2017
).
15.
H. K.
Lichtenthaler
and
C.
Bushmann
,
Current Protocols in Food Analytical Chemistry
F.4.3
,
1
8
(
2001
).
16.
A.
Supriyanto
,
Kusumandari
,
F.
Nurosyid
, and
A.
Erlina
,
Jurnal Fisika FLUX
5
,
141
147
(
2008
).
17.
Z.
Chen
,
S.
Chen
,
Open Journal of Physical Chemistry
4
,
15
20
(
2014
).
18.
M. B.
Heaney
,
Electrical measurement, signal processing and displays chapter 7
,
CRC Press LLC
(
2003
).
19.
A. D.
Hansen
,
Model for a stand-alone PV system
,
Roskilde
:
Riso National Laboratory
(
2000
).
20.
J.
Xi
,
N. A.
Dahoudi
,
Q.
Zhang
,
Y.
Sun
, and
G.
Cao
,
Science of Advanced Materials
4
,
727
733
(
2012
).
21.
P.
Selvaraj
,
H.
Baig
,
T. K.
Mallick
,
J.
Siviter
,
A.
Montecucco
,
W.
Li
, …., and
S.
Sundaram
,
Solar Energy Materials and Solar Cell
175
,
29
34
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.