Electrochemical synthesis has been used for in-situ metal-hydroxyapatite production effectively because of the ease of controlling good metal synthesis and dispersion. This condition is very interesting to produce a catalyst in the form of a Co/Ni-hydroxyapatite composite used for hydrogen production from storage as a hydride chemical. The novelty of this research is the electrochemical synthesis of in situ metal-hydroxyapatite catalysts (together with electrochemistry of hydroxyapatite formation and Co/Ni impregnation). The advantages of hydroxyapatite as a catalyst support and electrochemical method in situ were combined in this study. The set of the experimental equppment consist of an electrochemical cell and a DC power supply. The electrochemical cells consist of a 250 ml volume acrylic container containing an electrolyte solution containing NiCl2 and CoCl2. This solution is made by dissolving Na2H2EDTA.2H2O pro analyzer. Anode and cathode electrodes in the form of a rectangular carbon rod measuring 5.2 cm x 2 cm. The electrochemical cells are connected to a DC power supply which functions to give a potential difference between the two electrodes where the current density can be varied according to the specified variable. The Cobalt / Nickel bi-catalyst with hydroxyapatite was successfully synthesized at 80 mA/ cm2 current density and 1 hour time electrolysis at room temperature.

1.
B.
Alrafei
,
I.
Polaert
,
A
Ledoux
, and
F.
Azzolina-Jury
,
Catal Today
, In Press, Available online 12 March
2019
2.
A.K.
Chaurasia
,
H.
Goyal
, and
P.
Mondal
,
Int. J. Hydrog. Energy
, In press, Available online 16 August
2019
3.
G.
Bozkurt
,
A.
Ozer
, and
A. B.
Yurtcan
,
Int. J. Hydrog. Energy
43
,
9
,
22205
22214
(
2018
)
4.
K.
Ray
,
S.
Sengupta
, and
G.
Deo
,
Fuel Process Technol.
156
,
195
203
(
2017
)
5.
B.
Yan
,
Y.
Zhang
,
G.
Chen
,
R.
Shan
,
W.
Ma
, and
C.
Liu
,
Energ Convers Manage
130
,
156
164
(
2016
)
6.
C.
Huang
,
Z.
Ma
,
P.
Xie
,
Y.
Yue
,
W.
Hua
, and
Z.
Gao
,
J Mol Catal A-Chem
400
,
90
94
(
2015
)
7.
J.
Dobosz
,
M.
Cichy
,
M.
Zawadzki
, and
T.
Borowiecki
,
J. Energy Chem
27
,
2
,
404
412
(
2018
)
8.
A.
Nur
,
A.
Jumari
,
A. W.
Budiman
,
N.
Nazriati
,
F.
Fajaroh
,
J.H.
Fariza
J, and
T.L.
Anisa
, “
The Current Density on Electrosynthesis of Hydroxyapatite with Bipolar Membrane
,” In:
The 24ᵗʰ Regional Symposium on Chemical Engineering (RSCE 2017)
,
MATEC Web of Conferences
156
, edited by
A.R.
Kumoro
, et al
. (
edp Sciences
,
2018
) pp.
05015
.
9.
A.
Nur
and
H.
Setyawan
,
J. Chem. Eng. Japan
49
,
2
,
144
151
(
2016
)
10.
A.
Nur
,
H.
Setyawan
,
A.
Widjaja
, and
I.W.
Lenggoro
,
Bull. Chem React. Eng. Catal.
9
,
3
,
168
174
(
2014
)
11.
A.
Nur
,
A.
Jumari
,
A.W.
Budiman
,
A. H.
Wicaksono
,
A. R.
Nurohmah
,
N.
Nazriati
, and
F.
Fajaroh
, “
Synthesis of nickel – hydroxyapatite by electrochemical method
” In:
1st International Symposium of Indonesian Chemical Engineering (ISIChem) 2018
,
IOP Conf. Series: Materials Science and Engineering
543
, edited by
H.W.
Aparamarta
, et al
(
IOP Publishing
) pp.
012026
12.
A.
Nur
,
A.
Jumari
,
A. W.
Budiman
,
O.
Ruzicka
,
M. A.
Fajri
,
N.
Nazriati
, and
F.
Fajaroh
, “
Electrosynthesis of cobalt – hydroxyapatite nanoparticles
” In:
The 4th International Conference On Industrial, Mechanical, Electrical, And Chemical Engineering
,
AIP Conference Proceedings
2097
, edited by
M.
Anwar
, et al
(
AIP Publising
)
030012
This content is only available via PDF.
You do not currently have access to this content.