In mathematics, semiotics is a critical element in understanding and constructing meaning, not least in understanding and solving mathematical problems. Everything associated with signs, symbols and relations between symbols is called semiotics. The geometry diagram is one of the mathematical topics that contain the semiotic structure of the visual features of an object. This feature is represented to convey the meaning of the intended object. This research is a descriptive qualitative approach, by collecting data through tests (problems) and interviews. The study aimed to describe the semiotic process of students in solving problems related to the construction process of meaning in the geometry diagram based on the sign relationships, from the perspective of Charles Sanders Peirce. The results indicate that the formation of meaning and understanding of students about the representation of geometry diagrams depends on the structure of the geometry diagram. in addition, the relationship between each semiotic component is presented.

1.
S.
Eggins
,
An Introduction to Systemic Functional Linguistics
, 2nd ed (
Continuum
,
New York
,
2004
).
2.
J.L.
Lemke
,
Educ. Perspect. Math. Semiosis Think. Interpret. Knowing
1
,
215
(
2003
).
3.
K.
O’Halloran
,
Mathematical Discourse: Language, Symbolism and Visual Images
(
A&C Black
,
2008
).
4.
L.
Radford
,
Math. Think. Learn.
5
,
37
(
2003
).
5.
J.
Alshwaikh
,
Res. Math. Educ.
12
,
69
(
2010
).
6.
R.
Zazkis
,
E.
Dubinsky
, and
J.
Dautermann
,
J. Res. Math. Educ.
435
(
1996
).
7.
A.
Arcavi
,
Educ. Stud. Math.
52
,
215
(
2003
).
8.
M.
Inglis
and
J.P.
Mejía-Ramos
,
Found. Sci.
14
,
97
(
2009
).
9.
H.
Gal
and
L.
Linchevski
,
Educ. Stud. Math.
74
,
163
(
2010
).
10.
C.
Sabena
, in
Invit. Lect. 13th Int. Congr. Math. Educ.
(
Springer
,
Cham
,
2018
), pp.
541
559
.
11.
J. K.
Dimmel
and
P. G.
Herbst
,
J. Res. Math. Educ.
46
,
147
(
2015
).
12.
M.
O’Toole
,
The language of displayed art
, 2nd ed (
Routledge
,
2011
).
13.
T.
Van Leeuwen
,
Introducing social semiotics
. (
Routledge
,
2005
).
14.
K.
O’Halloran
,
Mathematical discourse: Language, symbolism and visual images
.
Bloomsbury Publishing
,
2005
).
15.
M.J.
Schleppegrell
,
Read. Writ. Q.
23
,
139
(
2007
).
16.
S.
Shreyar
,
B.
Zolkower
and
S.
Pérez
,
Educ. Stud. Math.
73
,
21
(
2010
).
17.
B.
Zolkower
and
E.
de Freitas
,
Lang. Dial.
2
,
60
(
2012
).
18.
R.
Duval
,
Educ. Stud. Math.
61
,
103
(
2006
).
19.
M.
Weiss
and
P.
Herbst
, “Every single little proof they do, you could call it a theorem: Translation between abstract concepts and concrete objects” in the geometry classroom. in
Annual Meeting of American Educational Research Association
. (
Chicago, IL
,
2007
, April).
20.
E.
Fischbein
,
Educ. Stud. Math.
24
,
139
(
1993
).
21.
P.
Herbst
,
ZDM.
36
,
129
(
2004
).
22.
C.
Laborde
, in
Meaning in mathematics education
(
New York, NY
:
Springer
,
2005
), pp.
159
179
.
23.
G.
Kress
and
T.
van Leeuwen
,
Reading Images: The Grammar of Visual Design
, 2nd ed. (
Routledge
,
2006
).
24.
M.H.G.
Hoffmann
,
Educ. Stud. Math.
61
,
279
(
2006
).
25.
F.
Seeger
,
Educ. Stud. Math.
77
,
207
(
2011
).
26.
M.
Otte
, in
Signs Signification
(
Springer
,
Cham
,
2018
), pp.
155
171
.
27.
V.
Mudaly
,
Afr. J. Res. Math. Sci. Technol. Educ.
18
,
3
(
2014
).
This content is only available via PDF.
You do not currently have access to this content.