Chemical literacy as a learning outcome can be achieved with the implementation of appropriate instructional approaches and the availability of proper teaching materials and assessment instruments. The aims of this research are to develop and to implement a valid and reliable multiple-choice chemical literacy test (MC-CLT) in acid-base chemistry. The test development was carried out through five stages, i.e., (1) literature study, (2) development of items, (3) expert judgment, (4) pilot study, and (5) finalization of the test. The pilot study involved 138 students who had learnt acid-base chemistry. Out of 30 items constructed in this study, six items were found invalid in which two of them were then revised. The final instrument consisted of 26 items with Cronbach’s Alpha reliability coefficient of 0.804. Survey to 64 respondents showed that their average score of chemical literacy was 57.75% (moderate category). At the level of chemical literacy domains, the average score from the lowest to the highest are (a) epistemic knowledge (41.93%); (b) competency to explain phenomena scientifically (57.59%); (c) competency to interpret data and evidence scientifically (58.01%); (d) procedural knowledge (59.16%); (e) competence to evaluate and design scientific inquiry (63.28%); and (f) content knowledge of acid-base chemistry (66.54%). These results suggest that more attention should be given to the development of epistemic knowledge and its role as a theoretical foundation in determining the design of scientific inquiry, explaining phenomena, and the understanding scientific terms and concepts.

1.
N.
Barnea
,
Y. J.
Dori
, and
A.
Hofstein
,
Chemistry Education Research and Practice
,
11
,
218
228
(
2010
).
2.
Kementerian Pendidikan dan Kebudayaan Republik Indonesia
,
Permendikbud Nomor 20 tahun 2016
(
Kementerian Pendidikan dan Kebudayaan
,
Jakarta
,
2016
).
3.
N. G.
Lederman
,
Science and Children
52
,
8
10
(
2014
).
4.
Muntholib
,
S.
Rahayu
,
S.
Ibnu
,
F.
Fajaroh
,
S.
Kusairi
, and
B.
Kuswandi
,
Indonesian Journal of Chemistry
(in press).
5.
OECD
,
PISA 2015 Assessment and Analytical Framework.
2016
.
6.
H.
Fives
,
W.
Huebner
,
A. S.
Birnbaum
, and
M.
Nicolich
,
Science Education
98
,
549
580
(
2014
).
7.
Y.
Shwartz
,
R.
Ben-Zvi
, and
A.
Hofstein
,
Chemistry Education Research and Practice
7
,
203
225
(
2006
).
8.
C.
Cigdemoglu
and
O.
Geban
,
Chemistry Education Research and Practice
16
,
302
317
(
2015
).
9.
OECD
,
PISA 2009 Assessment Framework: Key Competencies in Reading, Mathematics and Science. OECD
,
2010
.
10.
OECD
,
PISA 2018 Assessment and Analytical Framework. OECD
,
2019
.
11.
Y.
Shwartz
,
R.
Ben-Zvi
, and
A.
Hofstein
,
International Journal of Science Education
27
,
323
344
(
2005
).
12.
OECD
,
PISA 2015 Assessment and Analytical Framework
.
OECD Publishing
,
2016
.
13.
Y.
Shwartz
,
R.
Ben-Zvi
, and
A.
Hofstein
,
Chemistry Education Research and Practice
7
,
203
225
(
2006
).
14.
C.
Cigdemoglu
,
H. O.
Arslan
, and
A.
Cam
,
Chemistry Education Research and Practice
,
18
(
2
),
288
303
(
2017
).
15.
C.
Cigdemoglu
and
O.
Geban
,
Chemistry Education Research and Practice
16
,
302
317
(
2015
).
16.
R.
Chang
and
K. A.
Goldsby
,
Chemistry
,
Twelfth edition. New York, NY
:
McGraw-Hill Education
,
2016
.
17.
R.
Lewis
and
W.
Evans
,
Chemistry.
2018
.
18.
J.
McMurry
,
R. C.
Fay
, and
J. K.
Robinson
,
Chemistry.
2015
.
19.
Kementerian Pendidikan dan Kebudayaan Republik Indonesia
,
Permendikbud Nomor 24 tahun 2016
(
Kementerian Pendidikan dan Kebudayaan
,
Jakarta
,
2016
).
20.
OECD
,
PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy
.
OECD
,
2013
.
21.
S.
Sadhu
and
E. W.
Laksono
,
International Journal of Instruction
11
,
557
572
(
2018
).
22.
R.
Thummathong
and
K.
Thathong
,
Journal of Turkish Science Education
13
,
185
198
(
2016
).
23.
W. K.
Adams
and
C. E.
Wieman
,
International Journal of Science Education
33
,
1289
1312
(
2011
).
24.
A. L.
Chandrasegaran
,
D. F.
Treagust
, and
M.
Mocerino
,
Chemistry Education Research and Practice
8
,
293
307
(
2007
).
25.
M. I. M.
Damanhuri
,
D. F.
Treagust
,
M.
Won
, and
A. L.
Chandrasegaran
,
International Journal of Environmental and Science Education
11
,
9
27
(
2016
).
26.
H.
Habiddin
and
E. M.
Page
,
Indonesian Journal of Chemistry
19
,
720
736
(
2019
).
27.
P.
Wattanakasiwich
,
P.
Taleab
,
M.
Sharma
, and
I. D.
Johnston
,
International Journal of Innovation in Science and Mathematics Education
21
,
29
53
(
2013
).
28.
L.
Ding
and
R.
Beichner
,
Phys. Rev. Spec. Top. - Phys. Educ. Res.
,
5(2)
,
020103
(
2009
).
29.
S.
Wuttiprom
,
M. D.
Sharma
,
I. D.
Johnston
,
R.
Chitaree
, and
C.
Soankwan
,
International Journal of Science Education
31
,
631
654
(
2009
).
30.
K. S.
Taber
,
Research in Science Education
48
,
1273
1296
(
2018
).
31.
C.
Gormally
,
P.
Brickman
,
B.
Hallar
, and
N.
Armstrong
,
international journal scholarship teaching learning
3
,
1
22
(
2009
).
32.
S.
Salvucci
,
E.
Walter
,
V.
Conley
,
S.
Fink
, and
M.
Saba
, “Measurement Error Studies at the National Center for Education Statistics.”
U.S. Department of Education
,
1997
.
33.
A.
Çetin
and
Ö. F.
Özdemir
,
EURASIA Journal of Mathematics, Science and Technology Education
14
,
1815
1826
(
2018
).
34.
E. A.
Sigler
and
J.
Saam
,
Journal of the Scholarship of Teaching and Learning
7
,
22
31
(
2007
).
This content is only available via PDF.
You do not currently have access to this content.