The adsorption equilibrium isotherms of oil content via the electrocoagulation treatment of real oily wastewater were studied and modeled. Ten isotherm models (Langmuir, Freundlish, Temkin, Dubinin–Radushkevich, Kiselev, Fowler–Guggenheim, Elovich, Hurkins-Jura, Jovanovic and Hill–de Boer models) were selected to predict the adsorption equilibrium isotherms and their characteristics parameters. A triple aluminum tubes was manufactured in a monopolar-concentric arrangement to investigate the purpose of treating real oily wastewater (523.11 ppm of oil content) produced from crude oil wells location (West Qurna 1 /Basra-Iraq) under the impacts of the operational variables; the electrolysis time (2-20 min.), the current density (4.4 mA/cm2), the initial pH equaling 6.5, and the agitation speed fixed as 200 rpm. The results showed that the studied models fitted the data in the order as: Freundlish (R2=0.9991) > Langmuir (R2=0.9960) > Hurkins-Jura (R2=0.9926) > Temkin (R2=0.9922) > Elovich (R2=0.9906) > Jovanovic (R2=0.9573) > Fowler–Guggenheim (R2=0.8676) > Hill–de Boer (R2=0.8294) > Dubinin–Radushkevich (R2=0.7928) > Kiselev (R2=0.7366) isotherms. The modeling of adsorption isotherm revealed that the interaction of oil content with the electro-coagulant is characterized as physical adsorption process. There is no formation of complex between the adsorbed molecules due to the repulsion among them. Additionally, the heat of adsorption will decrease with loading via the electrocoagulation treatment of real oily wastewater.

1.
D.A.
Aljuboury
,
P.
Palaniandy
,
H.B.
Abdul Aziz
and
S.
Feroz
,
Global NEST Journal.
19
,
439
452
(
2017
).
2.
L.
Yu
,
M.
Han
and
F.
He
,
Arabian J. Chem.
10
,
1913
1922
(
2017
).
3.
S.
Jamaly
,
A.
Giwa
and
S. W.
Hasan
,
J. Environ. Sci.
3
,
15
30
(
2015
).
4.
F. Y.
AlJaberi
, “
Modelling Current Efficiency and Ohmic Potential Drop in an Innovated Electrocoagulation Reactor
”,
Desalination Water Treat.
In press (
2019
).
5.
A. I.
Adeogun
and
R. B.
Balakrishnan
,
J. Electrochem. Sci. Eng.
6
,
199
213
(
2016
).
6.
F. Y.
AlJaberi
,
Desalination Water Treat.
120
,
141
149
(
2018
).
7.
A.
Assadi
,
M. M.
Emamjomeh
,
M.
Ghasemi
and
M. M.
Fazli
,
JQUMS.
18
(
6
)
18
23
(
2015
).
8.
Abdul
Rehman
,
M.
Kimb
,
A.
Reverberic
and
B.
Fabiano
,
Chem Eng Trans.
43
,
2251
2256
(
2015
).
9.
K.
Brahmi
,
W.
Bouguerra
,
B.
Hamrouni
,
E.
Elaloui
,
M.
Loungou
and
Z.
Tlili
,
Arabian J. Chem. 1-12
,
10
.
1
12
(
2015
).
10.
U. T.
Un
and
S. E.
Ocal
,
Adv. Theory Simul.
6
,
425
429
(
2015
).
11.
F. Y.
AlJaberi
and
W. T.
Mohammed
,
Mesopo. Environ. J.
4
,
45
65
(
2018
).
12.
Riyanto
and
A.
Hidayatillah
, “
Electrocoagulation of detergent wastewater using aluminium wire netting electrode (awne)
”, (
Proceeding of International Conference on Research, Implementation and Education of Mathematics and Sciences
,
2014
), pp.
151
158
.
13.
F. Y.
Aljaberi
and
B. A.
Abdul Majeed
,
Al-Kufa University Journal for Biology
, special issue,
75
85
(
2019
).
14.
F. Y.
AlJaberi
,
J. Environ Chem Eng.
6
,
6069
6078
(
2018
).
15.
S.
Safari
,
M. A.
Aghdam
and
H. R.
Kariminia
,
Int. J. Environ. Sci. Technol.
13
,
231
242
(
2015
).
16.
F. Y.
AlJaberi
and
W. T.
Mohammed
,
Desalination Water Treat.
101
,
86
91
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.