Growing amount of building waste arising from the production of common and special materials has found new applications in useful and environmentally-friendly technologies. Waste brick dust (WBD) from the production of ceramic blocks, concrete slurry waste (CSW) generated in prestressed poles production and powdered waste from the treatment of technical stone (TSW) were tested as cheap and available adsorbents of lead (Pb) and cesium (Cs) from contaminated water. The structural, chemical and surface characteristics of materials were determined by X-ray diffraction (XRD), X-ray fluorescence (XRF), specific surface area (SBET) and zero point of charge (pHZPC), model solutions of Cs+ and Pb2+ (0.1 mmol.L−1 and 0.5 mmol.L−1) were used in adsorption experiments. All sorbents were promising for quantitative Pb2+ removal (>99%) at a low sorbent consumption (∼10 g per 1 g of Pb). Generally worse Cs+ adsorption was related to the different thermodynamic and binding properties of hydrated Cs+ and Pb2+ ions. The efficiency of Cs+ adsorption decreased in the order: TSW (70–90%) >> WBD (25–50%) > CSW (10–15%). In terms of sorbent consumption, only TSW could be considered a perspective Cs+ sorbent in the technological use (∼102 g per 1 g of Pb). In order to assess the applicability of building wastes in adsorption technologies, the verification of Pb2+ and Cs+ stability in saturated sorbents will be necessary.

1.
R.V.
Silva
,
J.
de Brito
, and
R.K.
Dhir
,
Con. Build Mat.
65
,
201
217
(
2014
).
2.
T.
Kulovana
,
E.
Vejmelkova
,
M.
Keppert
,
P.
Rovnanikova
,
M.
Ondracek
,
Z.
Kersner
, and
R.
Cerny
,
Cement Wapno Beton
20
,
11
24
(
2015
).
3.
J.S.
Damtoft
,
J.
Lukasik
,
D.
Herfort
,
D.
Sorrentino
, and
E.M.
Gartner
,
Cem. Conc. Res.
38
,
115
127
(
2008
).
4.
B.
Dousova
,
D.
Kolousek
,
M.
Keppert
,
V.
Machovič
,
M.
Lhotka
,
M.
Urbanova
,
J.
Brus
, and
L.
Holcova
,
Appl. Clay Sci.
134
,
145
152
(
2016
).
5.
B.
Doušová
,
D.
Koloušek
,
M.
Lhotka
,
M.
Keppert
,
M.
Urbanová
,
L.
Kobera
, and
J.
Brus
,
Materials
12
,
1647
1660
(
2019
).
6.
L.
Yang
,
R.J.
Donahoe
, and
J.C.
Redwine
,
Sci. Total Environ.
387
,
28
41
(
2007
).
7.
B.
Doušová
,
L.
Fuitová
,
T.
Grygar
,
V.
Machovič
.,
D.
Koloušek
,
L.
Herzogová
and
M.
Lhotka
,
J. Hazard. Mater.
165
,
134
140
(
2009
).
8.
M.
Jiang
,
Q.
Wang
,
X.
Jin
, and
Z.
Chen
,
J. Hazard. Mater.
170
,
332
339
(
2009
).
9.
C.S.C.
Wong
, and
X.D.
Li
,
Sci. Total Environ.
319
,
185
195
(
2004
).
10.
R.M.
Cornell
, and
J Radioanal. Nuclear Chem.
,
171
(
2
),
483
500
(
1993
).
11.
R.R.
Jalali
,
H.
Ghafourian
,
Y.
Asef
,
S.T.
Dalir
,
M.H.
Sahafipour
, and
B.M.
Gharanjik
,
J. Hazard. Mater.
B116
,
125
134
(
2004
).
12.
B.
Doušová
,
T.
Grygar
,
A.
Martaus
,
L.
Fuitová
,
D.
Koloušek
, and
V.
Machovič
,
J. Colloid Interface Sci.
302
,
424
431
(
2006
).
13.
Y.
Jeong
,
M.
Fan
,
S.
Singh
,
C.L.
Chuang
, and
J.H.
van Leeuwen
,
Chem. Eng. Process.
46
,
1030
1039
(
2007
).
14.
N.Z.
Misak
,
Reactive Polymers
21
,
53
64
(
1993
).
15.
Y.
Marcus
,
J. Chem. Soc. Faraday Trans.
87
(
18
),
2995
2999
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.