The emerging Single-cell transcriptome sequencing technologies give rise to new resource for cell biology. Transcriptomic landscapes of heterogenetic samples at the single-cell resolution enable characterization of cell sub-types and reveal gene co-expression pattern. Numerous efficient algorithms have been developed to accurately normalize, cluster and visualize cells from single-cell transcriptome sequencing profiles, including but not limited to Seurat, SC3, SIMLR, and SCANPY. However, systematic comparisons of the performance of these scRNA-seq cluster method are lacking. Here, we use 7 gold-standard scRNA-seq datasets with clear label and Tabula Muris, a dataset of millions of single-cell transcriptomes, to evaluate the 4 scRNA-seq cluster method. Results shows that SCANPY is more time-cost-efficient for large-scale data but SC3 is more precise for cell sub-types recall. Our quantitative comparison offers an informed choice among 4 scRNA-seq cluster methods, and it provides a hint for further improvements of scRNA-seq analysis methods.

1.
Shapiro
,
E.
,
Biezuner
,
T.
&
Linnarsson
,
S.
Single-cell sequencing-based technologies will revolutionize whole-organism science
.
Nat. Rev. Genet.
14
,
618
630
(
2013
).
2.
Papalexi
,
E.
&
Satija
,
R.
Single-cell RNA sequencing to explore immune cell heterogeneity
.
Nature Reviews Immunology
18
,
35
45
(
2018
).
3.
Islam
,
S.
 et al. 
Quantitative single-cell RNA-seq with unique molecular identifiers
.
Nat. Methods
11
,
163
166
(
2014
).
4.
Wu
,
L.
 et al. 
Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells
.
GigaScience
2015
4
:
14
,
51
(
2015
).
5.
Zheng
,
G. X. Y.
 et al. 
Massively parallel digital transcriptional profiling of single cells
.
Nat Commun
8
,
14049
(
2017
).
6.
Stegle
,
O.
,
Teichmann
,
S. A.
&
Marioni
,
J. C.
Computational and analytical challenges in single-cell transcriptomics
.
Nat. Rev. Genet.
16
,
133
145
(
2015
).
7.
(null) et al
.
Challenges and emerging directions in single-cell analysis
.
Genome biology
18
,
1
8
(
2017
).
8.
Risso
,
D.
,
Perraudeau
,
F.
,
Gribkova
,
S.
,
Dudoit
,
S.
&
Vert
,
J.-P.
A general and flexible method for signal extraction from single-cell RNA-seq data
.
Nat Commun
9
,
284
(
2018
).
9.
Kiselev
,
V. Y.
 et al. 
SC3: consensus clustering of single-cell RNA-seq data
.
Nat. Methods
14
,
483
486
(
2017
).
10.
Wang
,
B.
,
Zhu
,
J.
,
Pierson
,
E.
,
Ramazzotti
,
D.
&
Batzoglou
,
S.
Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
.
Nat. Methods
14
,
414
416
(
2017
).
11.
Wolf
,
F. A.
,
Angerer
,
P.
&
Theis
,
F. J.
SCANPY: large-scale single-cell gene expression data analysis
.
Genome Biol.
19
,
1145
(
2018
).
12.
Biase
,
F. H.
,
Cao
,
X.
&
Zhong
,
S.
Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing
.
Genome Res.
24
,
1787
1796
(
2014
).
13.
Yan
,
L.
 et al. 
Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells
.
Nat. Struct. Mol. Biol.
20
,
1131
1139
(
2013
).
14.
Goolam
,
M.
 et al. 
Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos
.
Cell
165
,
61
74
(
2016
).
15.
Deng
,
Q.
,
Ramsköld
,
D.
,
Reinius
,
B.
&
Sandberg
,
R.
Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells
.
Science
343
,
193
196
(
2014
).
16.
Pollen
,
A. A.
 et al. 
Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
.
Nat. Biotechnol.
32
,
1053
1058
(
2014
).
17.
Kolodziejczyk
,
A. A.
 et al. 
Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation
.
Cell Stem Cell
17
,
471
485
(
2015
).
18.
Usoskin
,
D.
 et al. 
Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing
.
Nature Neuroscience
2014
18
:
118
,
145
(
2015
).
19.
Zeisel
,
A.
 et al. 
Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
.
Science
347
,
1138
1142
(
2015
).
20.
Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
.
Nature
1
(
2018
). doi:,
This content is only available via PDF.
You do not currently have access to this content.