In order to evaluate the effects of extremely low frequency magnetic field on growth of tomato seedlings (Solanum lycopersicum L.), an environmental controlled experiment was conducted during 2016-2017. After three weeks of germination of seeds and ulterior growth, each tomato seedling was transferred on soil in separate recipient and irrigated with 5ml distilled water daily. After that, the seedlings had been exposed one by one to extremely low frequency (50Hz) magnetic field (ELF-MF) with different values of magnetic flux density (1-2-3 mT) and for different durations of daily exposure. For both type of samples, control and exposed plants, the effects of magnetic field on assimilatory pigments level at different step of growth under daily magnetically exposure were assayed. The results indicated that the exposure to magnetic field increased the chlorophylls level for low magnetic flux density and low exposure duration, respectively. The humidity of the fresh tissue was affected by the magnetic field presence during the fifty days of growth.

1.
M.P.
Piacentini
,
D.
Fraternale
,
E.
Piatti
,
D.
Ricci
,
F.
Vetrano
,
M.
Dacha
and
A.
Accorsi
,
Plant Science
161
,
45
53
(
2001
).
2.
R.
Radhakrishnan
, and
B. D. R.
Kumari
,
Indian J Biochem Biophys.
50
,
312
317
(
2013
).
3.
C.
Celestino
,
M. L.
Picazo
,
M.
Toribio
,
J. A.
Alvarez-Ude
and
J. L.
Bardasano
,
Plant Cell Tiss. Org. Cult
54
(
1
),
65
69
(
1998
).
4.
B. C.
Stange
,
R. E.
Rowland
,
B. I.
Rapley
and
J. V.
Podd
,
Bioelectromagnetics
23
,
347
354
(
2002
).
5.
M. L.
Picazo
,
E.
Martinez
,
M. V.
Carbonell
,
A.
Raya
,
J. M.
Amaya
and
J. L.
Bardasano
,
Electro Magnetobiol
181
,
47
156
(
1999
).
6.
M.
Racuciu
,
Rom Biotech Lett.
17
,
7662
7672
(
2012
).
7.
A.
Vashisth
and
S.
Nagarajan
,
Journal of Agricultural Physics
9
,
50
58
(
2009
)
8.
R.
Radhakrishnan
, and
B. D. R.
Kumari
,
Plant Physiol Biochem
51
,
139
144
(
2012
).
9.
M.
Mroczek-Zdyrska
,
K.
Kornarzyński
,
S.
Pietruszewski
and
M.
Gagoś
,
Plant Biosystems
151
,
504
511
(
2017
).
10.
A.
Pazur
,
V.
Rassadina
,
J.
Dandler
and
J.
Zoller
,
Biomagn Res Technol
4
,
1
12
(
2006
).
11.
H. H.
Huang
and
S. R.
Wang
,
Nature and Science
5
(
1
),
60
68
(
2007
).
12.
H. O.
Guttzeit
,
Electro Magnetobiology
20
,
15
26
(
2001
).
13.
M.
Rochalska
and
K.
Grabowska
,
Int. Agrophysics
21
,
185
188
(
2007
).
14.
S. I.
Aksenov
,
T. I.
Gruzina
and
S. N.
Gorichev
,
Biofizika
46
,
1127
1132
(
2001
).
15.
E. I.
Aleman
,
R. O.
Moreira
,
A. A.
Lima
,
S. Ch.
Silva
,
J. L.
Gonzalez-Olmedo
and
A.
Chalfun-Junior
,
Bioelectromagnetics
35
,
414
425
(
2014
).
16.
M.
Răcuciu
,
H.
Oloşutean
and
M.
Perju
,
Romanian Journal of Physics
62
,
802
(
2017
).
17.
H. K.
Lichtenthaler
and
A. R.
Wellburn
,
Biochem. Soc. Transact
11
,
591
559
(
1983
).
18.
X.
Yang
,
X.
Wang
,
M.
Wei
,
S.
Hikosaka
and
E.
Goto
,
Braz. J Plant Physiol
21
,
309
317
(
2009
).
19.
F.
Babani
,
A.
Ylli
,
H. K.
Lichtenthaler
, “Optical properties of leaves on some wheat genotypes”, in
Fifth general conference of the Balkan Physical Union Proceedings
, edited by
Vrnjacka
Banja
,
Serbia and Montenegro
(
2003
) SP15– pp.
37
.
20.
A.
Bannari
,
K. S.
Khurshid
,
K.
Staenz
, and
J. W.
Schwarz
,
IEEE Trans. Geosci. Remote Sensing
45
,
3063
3074
(
2007
).
21.
C.
Sanchez
,
A. B.
Baranda
, and
I. Martinez
de Maranon
,
Food Chemistry
163
,
37
45
(
2014
).
22.
V.
Danilov
,
T.
Bas
,
M.
Eltez
, and
A.
Rizakulyeva
,
Acta Horticulturae
366
,
279
285
(
1994
).
23.
A.
de Souza
,
L.
Sueiro
,
D.
Garcia
, and
E.
Porras
,
Seed Sci. Technol.
38
,
61
72
(
2010
).
24.
T.
Leelapriya
,
K. S.
Dhilip
, and
P. V. Sanker
Narayan
,
Electromagnetic Biology and Medicine
22
(
2-3
),
117
125
(
2003
).
25.
V. N.
Binhi
,
Biophysics
40
(
3
),
671
685
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.