Arenga pinnata waste (APW) is one of the side products of the agricultural industry and abundant availability and has not used optimally. This research aims to investigate the effects of pH and temperature to enhance lactic acid production. APW contains 25.63 % of cellulose, 12.98 % of hemicellulose and 29.35 % of lignin. The presence of lignin in APW can inhibit lactic acid production. Therefore it must be eliminated with the pretreatment process. The pretreatment process consisted of acid-organosolv pretreatment to reduce lignin. Subsequently, enzymatic hydrolysis process with cellulase enzyme from Trichoderma reesei to produce reducing sugar for a lactic acid substrate. The acid-organosolv pretreatment using 0.2 M H2SO4 at 120°C for 40 minutes and ethanol 30 %(v/v) with NaOH 3%(v/v) as a catalyst at 107°C for 33 minutes can increase the cellulose content to 56.33 % and decreased lignin content to 27.09 %. Meanwhile, the lactic acid fermentation process with various pH (4.5; 6.5; 7.5) and Temperature (29°C; 33°C; 37°C; 41°C) using Lactobacillus casei and Lactobacillus rhamnosus. The highest lactic acid concentration obtained after 48 h of incubation at 37°C with pH 6.5 is 4.261 g/L for Lactobacillus casei and 3.523 g/L for Lactobacillus rhamnosus.

1.
M.
Sauer
,
D.
Porro
,
D.
Mattanovich
and
P.
Branduardi
,
Trends. Biotechnol
26
,
100
8
(
2008
).
2.
V.
Juturu
and
J. C.
Wu
,
Critical Reviews in Biotechnology
,
1
11
(
2015
).
3.
M.L
Sanyang
,
S.M
Sapuan
,
M.
Jawaid
,
M.R
Ishak
and
J.
Sahari
,
Renewable Sustain Energy Rev
54
,
533
649
(
2016
).
4.
F. Z
Lini
,
T.
Widjaja
,
N.
Hendrianie
,
A.
Altway
,
S.
Nurkamidah
, and
Y.
Tansil
,
MATEC Web of Conferences
154
, (
2017
)
5.
G.
Brodeur
,
J.
Telotte
,
J. J.
Stickel
and
S.
Ramakrishnan
,
Bioresources Tech.
220
,
621
628
(
2016
).
6.
L.
Mesa
,
E.
González
,
C.
Cara
,
M.
González
,
E.
Castro
and
S. I.
Mussatto
,
Chemical Engineering Journal
168
,
1157
1162
(
2011
).
7.
A.
Verardi
,
I.
Bari
, De,
E.
Ricca
and
V.
Calabro
,
Bioethanol
290
(
2012
).
8.
M. A.
Abdel-Rahman
,
Y.
Tashiro
and
K.
Sonomoto
,
Journal of Biotechnology
156
(
4
),
286
301
(
2011
).
9.
P. S.
Panesar
,
J. F.
Kennedy
,
C. J.
Knill
and
M.
Kosseva
,
Braz. Arch. Biol. Technol
53
,
219
226
(
2010
).
10.
TAPPI Test Method T222
.
Acid-Insoluble Lignin in Wood and Pulp
11.
M.
Loelovich
,
Journal SITA
17
(
4
),
208
214
(
2015
)
12.
G. L.
Miller
,
Analytical Chemistry
31
,
426
428
(
1959
).
13.
S. B.
Barker
and
W. H.
Summerson
,
J. Biol. Chem
138
,
535
554
(
1941
).
14.
S. H.
Mood
,
A. Hossein
Golfeshan
,
M.
Tabatabaei
,
G. Salehi
Jouzani
,
G. H.
Najafi
,
M.
Gholami
and
M.
Ardjmand
,
Renewable and Sustainable Energy Reviews
27
,
77
93
(
2013
).
15.
S.
Park
,
J. O.
Baker
,
M. E.
Himmel
,
P. A.
Parilla
,
D. K.
Johnson
,
Biotechnology for Biofuel
,
1
10
(
2010
).
16.
W.
Xiao
,
W.
Yin
,
S.
Xia
,
P.
Ma
,
Carbohydrate Polymers
87
,
2019
2023
(
2012
).
17.
Y.
Li
,
Z.
Sun
,
X.
Ge
and
J.
Zhang
,
Biotechnology Biofuels
9
,
20
(
2016
).
18.
E.
Cubas-Cano
,
C.
Gonzales-Fernandez
,
M.
Ballesteros
and
E.
Tomas-Pejo
,
Biofuel. Bioprod. Bioref
12
, (
2018
).
19.
M. Y.
Ha
,
S. W.
Kim
,
Y. W.
Lee
,
M. J.
Kim
and
S. J.
Kim
,
Journal of Bioscience and Bioengineering
96
(
2
) (
2003
).
20.
F. S.
Kok
,
I. I.
Muhamad
,
C. T.
Lee
,
F.
Razali
,
N.
Pa’e
,
S.
Shaharuddin
,
International Review of Chemical Engineering
4
,
3
(
2012
).
21.
Z.
Xu
,
Q.
Wang
,
Z.
Jiang
,
X.
Yang
and
Y.
Ji
,
Biomass Bioenergy
31
,
162
167
(
2007
)
22.
Y.
Wang
,
Y.
Li
,
X.
Pei
,
L.
Yu
and
Y.
Feng
,
Journal Biotechnology
129
,
510
515
(
2010
).
23.
M.
Hujanen
and
Y. Y.
Linko
,
Appl. Microbiol. Biotechnol
45
,
307
313
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.