Modelling of processes occurring in crescent-shaped compression chambers in a scroll compressor is a multi- stage task. The aim of this study was to create a universal method that allows determining the geometric parameters of the scrolls of the designed compressor and conduct its dynamical analysis. Due to the fact that the geometrical compression ratio of such compressors remains constant, but the actual one varies, it is necessary to provide additional compression that occurs in the first space before the discharge pressure. When determining pressures, it is necessary to take into account the pressure drop that occurs immediately after combining the first and second chambers. Also, when designing the geometry of the scrolls, it is necessary to take into account the undercutting of the scrolls at the bottom to ensure the mutual movement of the scrolls relative to each other during the rotation of the shaft. The paper presents a step-by-step method for the dynamic analysis of a scroll compressor. The principles of modelling the compression process in a scroll compressor in the Engineering Math Software Mathcad are described. The case of different geometric and actual degrees of compression is considered. The principle of constructing an indicator diagram of the compressor is described. Methods for determining the forces and moments that arise during the operation of the compressor are proposed, and their diagrams are given. The practical example of modelling shows the advantage of the proposed method.

1.
Ryu
,
B.
,
Ko
,
Y.
,
Kim
,
B.
,
Kim
,
B.
, &
Chung
,
B.
(
2019
). U.S. Patent Application No. 10/184,472.
2.
Hansaem
,
P. A. R. K.
,
Soojin
,
K. A. N. G.
,
Lee
,
K.
,
JEONG
,
H.
, &
Kim
,
C.
(
2018
). U.S. Patent Application No. 16/016,303.
3.
He
,
S.
,
Guo
,
W.
, &
Wai
,
E. W.
(
2006
).
Northern china heat pump application with the digital heating scroll compressor.
4.
Ho
,
Y.
,
Barito
,
T. R.
,
Khalifa
,
H. E.
, &
Giffune
,
J. P.
(
1993
). U.S. Patent No. 5,248,244.
Washington, DC
:
U.S. Patent and Trademark Office.
5.
Murayama
,
A.
,
Uchikawa
,
N.
,
Kuroshima
,
R.
,
Kuno
,
H.
,
Arata
,
T.
, &
Shiibayashi
,
M.
(
1989
). U.S. Patent No. 4,818,195. Washington, DC:
U.S. Patent and Trademark Office.
6.
Fogt
,
J. F.
, &
Kulkarni
,
S. S.
(
2016
). U.S. Patent Application No. 14/529,219.
7.
Doepker
,
R. J.
,
Perevozchikov
,
M. M.
, &
Stover
,
R. C.
(
2016
). U.S. Patent No. 9,435,340. Washington, DC:
U.S. Patent and Trademark Office.
8.
Ignatiev
,
K. M.
,
Fogt
,
J. F.
, &
Akei
,
M.
(
2016
). U.S. Patent No. 9,458,847. Washington, DC:
U.S. Patent and Trademark Office.
9.
Perevozchikov
,
M. M.
(
2017
). U.S. Patent No. 9,850,903.
Washington, DC
:
U.S. Patent and Trademark Office.
10.
Smerud
,
S. J.
,
Mlsna
,
E. S.
,
Betthauser
,
T. A.
, &
Kimball
,
A. P.
(
2018
). U.S. Patent Application No. 15/416,925.
11.
Akei
,
M.
,
Doepker
,
R. J.
,
Zhou
,
G.
,
Sun
,
Q.
, &
Shu
,
H.
(
2018
). U.S. Patent Application No. 16/047,675.
12.
Hirano
,
T.
,
Hagimoto
,
K.
, &
Matsuda
,
S.
(
2011
).
Study on scroll compressor behavior in case of liquid refrigerant injectio
.
Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers
,
10
,
227
238
.
13.
Wang
,
B.
,
Li
,
X.
, &
Shi
,
W.
(
2005
).
A general geometrical model of scroll compressors based on discretional initial angles of involute
.
International journal of refrigeration
,
28
(
6
),
958
966
.
14.
Chen
,
Y.
,
Halm
,
N. P.
,
Groll
,
E. A.
, &
Braun
,
J. E.
(
2002
).
Mathematical modeling of scroll compressors-part I: compression process modeling
.
International Journal of Refrigeration
,
25
(
6
),
731
750
.
15.
Chen
,
Y.
,
Halm
,
N. P.
,
Braun
,
J. E.
, &
Groll
,
E. A.
(
2002
).
Mathematical modeling of scroll compressors-part II: overall scroll compressor modeling
.
International Journal of Refrigeration
,
25
(
6
),
751
764
.
16.
Raikov
,
A.A.
,
Bronstein
,
M.D.
,
Burmistrov
,
A.V.
, &
Salikeev
,
S.I.
(
2014
).
An analytical method for calculating forces and moments in oil-free scroll vacuum pumps and compressors
.
News of higher educational institutions. Engineering
, (
7
(
652
)),
35
42
.
17.
Qin
,
F.
,
Shao
,
S.
,
Tian
,
C.
, &
Yang
,
H.
(
2016
).
Model simplification of scroll compressor with vapor refrigerant injection
.
International journal of green energy
,
13
(
8
),
803
811
.
18.
Yang
,
X.
,
Liu
,
J.
,
Meng
,
X.
, &
Liu
,
Y.
(
2018
).
From CAD to 1D: A Direct Approach to Modeling Scroll Compressors with Multi-Physics Simulation
.
19.
Uchikawa
N.
,
Terada
H.
,
Arata
T.
Scroll compressors for air conditioners
.
Hitachi Rev.
1987
. vol.
36
. No
3
. p.
155
.
20.
Kosachevsky
,
V.A.
(
2018
).
On modelling the central area of a scroll compressor
.
Herald of the International Academy of Refrigeration
, (
3
).
21.
Kosachevsky
V.A.
Development of the calculation and analysis of the operating process of scroll compressors
//
Dissertation. St. Petersburg.
1998
-
188
p.
22.
Voronov
,
V. A.
, &
Leonov
,
V. P.
(
2015
).
Testing of a Scroll Expander in Various Modes
.
Chemical and Petroleum Engineering
,
51
(
1-2
),
33
36
.
23.
Kolosov
,
M. A.
,
Borisenko
,
A. V.
,
Manylov
,
V. V.
, &
Valyakina
,
A. V.
(
2018
).
Losses of Power in Thermal Engines in Nonequilibrium Regenerative Heat Exchange
.
Chemical and Petroleum Engineering
,
54
(
3-4
),
239
246
.
24.
Shishov
,
V. V.
, &
Talyzin
,
M. S.
(
2015
).
Improving the energy efficiency of refrigeration plants by decreasing the temperature difference in air-cooled condensers
.
Thermal Engineering
,
62
(
9
),
652
655
.
25.
Arkharov
,
A. M.
, &
Sychev
,
V. V.
(
2006
).
Actual energy loss due to entropy generation in low-and high- temperature machines and plants
.
Chemical and Petroleum Engineering
,
42
(
1-2
),
31
41
.
26.
Arkharov
,
A. M.
,
Leont’ev
,
A. I.
,
Sychev
,
V. V.
,
Arkharov
,
I. A.
,
Krizhanovskaya
,
E. N.
, &
Kustov
,
P. V.
(
2009
).
Problem of cold accumulation as a matter of energy saving and optimization of energy consumption
.
Chemical and Petroleum Engineering
,
45
(
9
),
621
623
.
This content is only available via PDF.
You do not currently have access to this content.