By adopting reduction perturbation techniques, weakly non-linear wave equation in bubbly viscoelastic liquid flow is derived. Viscosity, elasticity and surface tension are considered under isothermal condition. A kink travelling wave solution is obtained using tangent hyperbolic method combined with Ricatti equation. Graphical representation of the solution is given and analysed with different values of parameter. The result shows that the steepening of the kink wave decreases with the increase of viscosity while the dispersion of the wave is greatly affected by the elasticity of the liquid. The result may be applied in sono-chemistry and biomedical application.

1.
L. v.
β€ˆ
Wijngaarden
,
J. Fluid Mech.
β€ˆ
33
,
465
–
474
(
1968
).
2.
R. E.
β€ˆ
Caflisch
,
M. J.
β€ˆ
Miksis
,
G. C.
β€ˆ
Papanicolaou
, and
L.
β€ˆ
Ting
,
J. Fluid Mech.
β€ˆ
153
,
259
–
273
(
1985
).
3.
L.
β€ˆ
Noordzij
and
L.
β€ˆ
van Wijngaarden
,
J. Fluid Mech.
β€ˆ
66
,
115
–
143
(
1974
).
4.
M.
β€ˆ
Watanabe
and
A.
β€ˆ
Prosperetti
,
J. Fluid Mech.
β€ˆ
274
,
349
–
381
(
1994
).
5.
L. v.
β€ˆ
Wijngaarden
,
Annu. Rev. Fluid Mech
β€ˆ
4
,
369
–
396
(
1972
).
6.
V.
β€ˆ
Kuznetsov
,
V.
β€ˆ
Nakoryakov
,
B.
β€ˆ
Pokusaev
, and
I.
β€ˆ
Shreiber
,
JETP Lett
β€ˆ
23
(
1976
).
7.
N. A.
β€ˆ
Gumerov
,
J. Appl. Math. Mech.
β€ˆ
56
,
50
–
59
(
1992
).
8.
D. B.
β€ˆ
Khismatullin
and
I. S.
β€ˆ
Akhatov
,
Phys. Fluids
β€ˆ
13
,
3582
–
3598
(
2001
).
9.
V.
β€ˆ
Gasenko
and
V.
β€ˆ
Nakoryakov
,
J. Eng. Thermophys
β€ˆ
17
,
158
–
165
(
2008
).
10.
N. A.
β€ˆ
Kudryashov
and
D. I.
β€ˆ
Sinelshchikov
,
Phys. Lett. A
β€ˆ
374
,
2011
–
2016
(
2010
).
11.
N. A.
β€ˆ
Kudryashov
and
D. I.
β€ˆ
Sinelshchikov
,
Appl. Math. Comput.
β€ˆ
217
,
414
–
421
(
2010
).
12.
N. A.
β€ˆ
Kudryashov
,
D. I.
β€ˆ
Sinelshchikov
, and
A. K.
β€ˆ
Volkov
,
Appl. Math. Comput.
β€ˆ
268
,
581
–
589
(
2015
).
13.
N. A.
β€ˆ
Kudryashov
and
D. I.
β€ˆ
Sinelshchikov
,
Phys. Scr.
β€ˆ
85
,
p. 025402
(
2012
).
14.
O.
β€ˆ
Louisnard
,
Ultrason. Sonochem.
β€ˆ
19
,
56
–
65
(
2012
).
15.
E.
β€ˆ
Brujan
,
Cavitation in Non-Newtonian fluids: with biomedical and bioengineering applications
(
Springer Science & Business Media
, (
2010
).
16.
D.
β€ˆ
Albernaz
and
F.
β€ˆ
Cunha
,
Mech. Res. Commun.
β€ˆ
38
,
255
–
260
(
2011
).
17.
H. A.
β€ˆ
Kafiabad
and
K.
β€ˆ
Sadeghy
,
J. Non-Newtonian Fluid Mech
β€ˆ
165
,
800
–
811
(
2010
).
18.
C. E.
β€ˆ
Brennen
,
Cavitation and bubble dynamics
(
Cambridge University Press
, (
2013
).
19.
M.
β€ˆ
Sajid
,
T.
β€ˆ
Hayat
, and
S.
β€ˆ
Asghar
,
Phys. Lett. A
β€ˆ
355
,
18
–
26
(
2006
).
20.
H. S.
β€ˆ
Fogler
and
J. D.
β€ˆ
Goddard
,
Phys. Fluids
β€ˆ
13
,
1135
–
1141
(
1970
).
21.
N. A.
β€ˆ
Kudryashov
and
D. I.
β€ˆ
Sinelshchikov
,
Int. J. Non Linear Mech.
β€ˆ
63
,
31
–
38
(
2014
).
22.
V.
β€ˆ
Nakoryakov
,
B. G.
β€ˆ
Pokusaev
, and
I. R.
β€ˆ
Shreiber
,
Wave propagation in gas-liquid media
(
CRC Press
, (
1993
).
23.
A.-M.
β€ˆ
Wazwaz
,
Partial differential equations and solitary waves theory
(
Springer Science & Business Media
, (
2010
).
24.
H.
β€ˆ
Leblond
,
J. Phys. B: At. Mol. Opt. Phys.
β€ˆ
41
, p.
043001
(
2008
).
25.
A.
β€ˆ
Shah
and
R.
β€ˆ
Saeed
,
Phys. Lett. A
β€ˆ
373
,
4164
–
4168
(
2009
).
26.
Y.
β€ˆ
Chukkol
,
M.
β€ˆ
Mohamad
,
M.
β€ˆ
Muminov
, et al.,
J. Appl. Math.
β€ˆ
2018
(
2018
).
27.
A.
β€ˆ
Wolf
,
C.
β€ˆ
Rauh
, and
A.
β€ˆ
Delgado
,
Arch. Appl. Mech.
β€ˆ
86
,
979
–
1002
(
2016
).
28.
D.
β€ˆ
Joseph
,
J.
β€ˆ
Wang
, and
T.
β€ˆ
Funada
,
Potential flows of viscous and viscoelastic liquids
(
Cambridge Univ. Press
, (
2007
).
This content is only available via PDF.
You do not currently have access to this content.