By adopting reduction perturbation techniques, weakly non-linear wave equation in bubbly viscoelastic liquid flow is derived. Viscosity, elasticity and surface tension are considered under isothermal condition. A kink travelling wave solution is obtained using tangent hyperbolic method combined with Ricatti equation. Graphical representation of the solution is given and analysed with different values of parameter. The result shows that the steepening of the kink wave decreases with the increase of viscosity while the dispersion of the wave is greatly affected by the elasticity of the liquid. The result may be applied in sono-chemistry and biomedical application.
REFERENCES
1.
L. v.
βWijngaarden
, J. Fluid Mech.
β33
, 465
β474
(1968
).2.
R. E.
βCaflisch
, M. J.
βMiksis
, G. C.
βPapanicolaou
, and L.
βTing
, J. Fluid Mech.
β153
, 259
β273
(1985
).3.
L.
βNoordzij
and L.
βvan Wijngaarden
, J. Fluid Mech.
β66
, 115
β143
(1974
).4.
M.
βWatanabe
and A.
βProsperetti
, J. Fluid Mech.
β274
, 349
β381
(1994
).5.
L. v.
βWijngaarden
, Annu. Rev. Fluid Mech
β4
, 369
β396
(1972
).6.
V.
βKuznetsov
, V.
βNakoryakov
, B.
βPokusaev
, and I.
βShreiber
, JETP Lett
β23
(1976
).7.
N. A.
βGumerov
, J. Appl. Math. Mech.
β56
, 50
β59
(1992
).8.
D. B.
βKhismatullin
and I. S.
βAkhatov
, Phys. Fluids
β13
, 3582
β3598
(2001
).9.
V.
βGasenko
and V.
βNakoryakov
, J. Eng. Thermophys
β17
, 158
β165
(2008
).10.
N. A.
βKudryashov
and D. I.
βSinelshchikov
, Phys. Lett. A
β374
, 2011
β2016
(2010
).11.
N. A.
βKudryashov
and D. I.
βSinelshchikov
, Appl. Math. Comput.
β217
, 414
β421
(2010
).12.
N. A.
βKudryashov
, D. I.
βSinelshchikov
, and A. K.
βVolkov
, Appl. Math. Comput.
β268
, 581
β589
(2015
).13.
N. A.
βKudryashov
and D. I.
βSinelshchikov
, Phys. Scr.
β85
, p. 025402
(2012
).14.
O.
βLouisnard
, Ultrason. Sonochem.
β19
, 56
β65
(2012
).15.
E.
βBrujan
, Cavitation in Non-Newtonian fluids: with biomedical and bioengineering applications
(Springer Science & Business Media
, (2010
).16.
D.
βAlbernaz
and F.
βCunha
, Mech. Res. Commun.
β38
, 255
β260
(2011
).17.
H. A.
βKafiabad
and K.
βSadeghy
, J. Non-Newtonian Fluid Mech
β165
, 800
β811
(2010
).18.
C. E.
βBrennen
, Cavitation and bubble dynamics
(Cambridge University Press
, (2013
).19.
M.
βSajid
, T.
βHayat
, and S.
βAsghar
, Phys. Lett. A
β355
, 18
β26
(2006
).20.
H. S.
βFogler
and J. D.
βGoddard
, Phys. Fluids
β13
, 1135
β1141
(1970
).21.
N. A.
βKudryashov
and D. I.
βSinelshchikov
, Int. J. Non Linear Mech.
β63
, 31
β38
(2014
).22.
V.
βNakoryakov
, B. G.
βPokusaev
, and I. R.
βShreiber
, Wave propagation in gas-liquid media
(CRC Press
, (1993
).23.
A.-M.
βWazwaz
, Partial differential equations and solitary waves theory
(Springer Science & Business Media
, (2010
).24.
H.
βLeblond
, J. Phys. B: At. Mol. Opt. Phys.
β41
, p. 043001
(2008
).25.
A.
βShah
and R.
βSaeed
, Phys. Lett. A
β373
, 4164
β4168
(2009
).26.
Y.
βChukkol
, M.
βMohamad
, M.
βMuminov
, et al., J. Appl. Math.
β2018
(2018
).27.
A.
βWolf
, C.
βRauh
, and A.
βDelgado
, Arch. Appl. Mech.
β86
, 979
β1002
(2016
).28.
D.
βJoseph
, J.
βWang
, and T.
βFunada
, Potential flows of viscous and viscoelastic liquids
(Cambridge Univ. Press
, (2007
).
This content is only available via PDF.
Β© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.