The activity particle size distribution is an important factor governing if the aerosols can be deposited at various respiratory tract regions in human. Radon decay products are the second cause of lung cancer after smoking. A lot of dosimetric models have been built in to calculate the effective dose and effective depth dose in different region and tissues of human respiratory system. The deposition fraction estimation is the first step of dose calculation. Therefore, the dependence of radioactive aerosols deposition fraction in human respiratory system on their size should be studied. In this work, the activity size distributions of 222Rn decay products (218Po, 214Pb and 214Bi,) are measured in indoor air. Only unattached fraction of 218Po (active median thermodynamic diameter AMTD∼ 1-1.5 nm) was measured with developed diffusion battery. Nearly 85% of 218Po activity is free with its short half-life time. Most of the measured attached activities of (214Pb and 214Bi) are associated with the aerosol particles of the accumulation mode (0.2 µm to 2 µm). The activity distribution of the two radionuclides is typically identical. The active median aerodynamic diameter (AMAD) is 0.42 µm with a geometric standard deviation (GSD) of 3.4. Given that dose estimation is sensitive to environmental conditions and based on the obtained experimental results, the local energy deposition of (214Pb and 214Bi) by adult male for various levels of physical exertion (sleeping, sitting, light exercise and Heavy exercise) is computed with LUDEP program. For unattached particles (1-5 nm) nearly 98% are deposited unlike accumulated fraction (0.42 µm in our case) not more 30 % is deposited in the respiratory system.

1.
M.
Yuness
,
A.
Mohamed
,
M.
AbdEl-hady
,
M.
Moustafa
and
H.
Nazmy
,
Appl. Radiat. Isot.
97
,
34
39
(
2015
).
2.
M.
Yuness
,
A.
Mohamed
,
M. Abd
El-Hady
,
M.
Moustafa
and
H.
Nazmy
,
Solid State Phenom.
238
,
151
160
(
2015
).
3.
A.
Mohamed
,
M. Abd
El-hady
,
M.
Moustafa
and
M.
Yuness
,
J. Radiat. Res. Appl. Sci.
7
, Iss.
3
,
333
337
(
2014
).
4.
M.
Yuness
,
A.
Mohamed
,
H.
Nazmy
,
M.
Moustafa
and
M. Abd
El-hady
,
Stoch. Environ. Res. Risk Assess.
30
, Iss.
1
,
167
174
(
2016
).
5.
WHO
, "
Air quality guidelines for Europe
,"
Environ. Sci. Pollut. Res.
3
, Iss.
1
,
23
(
2000
).
6.
WHO handbook on indoor radon: a public health perspective
. URL: https://apps.who.int/iris/handle/10665/44149 (Accessed: 22.06.2019).
7.
H.
Papaefthymiou
,
A.
Mavroudis
and
P.
Kritidis
,
J. Environ. Radioact.
66
, Iss.
3
,
247
260
(
2003
).
8.
T.
Anastasiou
,
H.
Tsertos
,
S.
Christofides
and
G.
Christodoulides
,
J. Environ. Radioact.
68
, Iss.
2
,
159
169
(
2003
).
9.
M. H.
Magalhães
,
E. C. S.
Amaral
,
I.
Sachett
and
E. R. R.
Rochedo
,
J. Environ. Radioact.
67
, Iss.
2
,
131
143
(
2003
).
10.
K. N.
Yu
,
T.
Cheung
,
Z. J.
Guan
,
E. C. M.
Young
,
B. W. N.
Mui
and
Y. Y.
Wong
,
J. Environ. Radioact.
45
, Iss.
3
,
291
308
(
1999
).
11.
M.
Yuness
,
A. M.
Mohamed
,
M. L. A.
El-hady
and
M.
Moustafa
,
J. Phys. Sci. Appl.
2
, Iss.
7
,
105
115
(
2012
).
12.
A.
Mohamed
,
A. A.
Ahmed
,
A. E.
Ali
and
M.
Yuness
,
J. Nucl. Radiat. Phys.
3
, Iss.
2
,
101
108
(
2008
).
13.
Y. A. M.
Mostafa
,
M.
Vasyanovich
,
M.
Zhukovsky
and
N.
Zaitceva
,
Radiat. Prot. Dosimetry
164
, Iss.
4
,
587
590
(
2015
).
14.
ICRP
,
Human Respiratory Tract Model for Radiological Protectione
,
ICRP Publication 66. Ann. ICRP 24
(
1–3
) (
1994
).
15.
R.
Mishra
,
Y. S.
Mayya
and
H. S.
Kushwaha
,
J. Aerosol Sci.
40
, Iss.
1
,
1
15
(
2009
).
16.
W. C.
Hinds
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd Edition
(
John Wiley & Sons, Hoboken
,
504
(
1999
).
17.
N. S.
Jarvis
,
A.
Birchall
,
Radioprotection
29
,
81
86
(
1994
).
18.
W.
Bich
,
Metrologia
43
, Iss.
4
,
1
3
(
2006
).
19.
A. C.
James
, "Chapter 29 A Reconsideration of Cells at Risk and Other Key Factors in Radon Daughter Dosimetry United Kingdom In assessing dose to lung from radon daughter exposure, it is appropriate to consider secretory cells as well as basal cells as sensitive targe," in
Cells at Risk and Other Key Factors
(
American Chemical Society
,
1987
), pp.
401
418
.
20.
H.
Nazmy
,
M.
Moustafa
,
A.
Mohamed
,
A.-R.
Ahmed
and
M.
Yuness
,
Int. J. Adv. Res.
2
, Iss.
10
,
585
591
(
2014
).
21.
H. N.
Khalaf
,
M. Y. A.
Mostafa
and
M.
Zhukovsky
,
Nukleonika
64
, Iss.
1
,
31
38
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.