This paper proposes advanced manufacturing method of adhesive assembly of multilayer devices with variable cross-section that allows expanding possibilities for the use of modern polymer composite materials (PCM) in the manufacture of products of aerospace and aviation industry. We investigated the interrelation between pressure of directional hot air flow and pore volume fraction in solidified material of multilayer device of adhesive assembly with variable cross-section during layer-by-layer application. The methodology of efficient control of pore content during adhesive assembly of devices is developed on the basis of the results of laboratory studies.

1.
Denkena
,
B.
,
Schmidt
,
C.
, &
Weber
,
P.
(
2016
).
Automated fiber placement head for manufacturing of innovative aerospace stiffening structures
.
Procedia Manufacturing
,
6
,
96
104
.
2.
Coleman
,
J. N.
,
Khan
,
U.
,
Blau
,
W. J.
, &
Gun’ko
,
Y. K.
(
2006
).
Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites
.
Carbon
,
44
(
9
),
1624
1652
.
3.
Subhankulov
R.M.
&
Ignatov
A. V.
(
2017
).
Development and research of progressive technological method of forming complex profile devices from polymer composite materials
. In “
V International Baltic maritime forum
” (pp.
226
233
).
4.
Croft
,
K.
,
Lessard
,
L.
,
Pasini
,
D.
,
Hojjati
,
M.
,
Chen
,
J.
, &
Yousefpour
,
A.
(
2011
).
Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates
.
Composites Part A: Applied Science and Manufacturing
,
42
(
5
),
484
491
.
5.
Caruso
,
M. M.
,
Davis
,
D. A.
,
Shen
,
Q.
,
Odom
,
S. A.
,
Sottos
,
N. R.
,
White
,
S. R.
, &
Moore
,
J. S.
(
2009
).
Mechanically-induced chemical changes in polymeric materials
.
Chemical reviews
,
109
(
11
),
5755
5798
.
6.
Nik
,
Mahdi
Arian
, et al. “
Optimization of variable stiffness composites with embedded defects induced by automated fiber placement
.”
Composite Structures
107
(
2014
):
160
166
.
7.
Lichtinger
,
R.
,
Lacalle
,
J.
,
Hinterhölzl
,
R.
,
Beier
,
U.
, &
Drechsler
,
K.
(
2015
).
Simulation and experimental validation of gaps and bridging in the automated fiber placement process
.
Science and Engineering of Composite Materials
,
22
(
2
),
131
148
.
8.
Harik
,
R.
,
Saidy
,
C.
,
Williams
,
S. J.
,
Gurdal
,
Z.
, &
Grimsley
,
B.
(
2018
, May).
Automated fiber placement defect identity cards: cause, anticipation, existence, significance, and progression
.
In SAMPE Conf Proc
.
9.
Azeez
,
A. A.
,
Rhee
,
K. Y.
,
Park
,
S. J.
, &
Hui
,
D.
(
2013
).
Epoxy clay nanocomposites–processing, properties and applications: A review
.
Composites Part B: Engineering
,
45
(
1
),
308
320
.
10.
Ignatov
A. V.
&
Subhankulov
R.M.
(
2016
).
Development of progressive technological method of complex profile devices from polymer materials
. In “
Metal processing complexes and robotic systems are perspective directions of research activities of young scientists and specialists
” (pp.
197
201
).
11.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
,
Umer
,
R.
, &
Seneviratne
,
L.
(
2015
).
Singularity-free workspace aimed optimal design of a 2T2R parallel mechanism for automated fiber placement
.
Journal of Mechanisms and Robotics
,
7
(
4
),
041022
.
12.
Rizzolo
,
R. H.
, &
Walczyk
,
D. F.
(
2016
).
Ultrasonic consolidation of thermoplastic composite prepreg for automated fiber placement
.
Journal of Thermoplastic Composite Materials
,
29
(
11
),
1480
1497
.
13.
Aziz
,
A. R.
,
Ali
,
M. A.
,
Zeng
,
X.
,
Umer
,
R.
,
Schubel
,
P.
, &
Cantwell
,
W. J.
(
2017
).
Transverse permeability of dry fiber preforms manufactured by automated fiber placement
.
Composites Science and Technology
,
152
,
57
67
.
14.
Lichtinger
,
R.
,
Hörmann
,
P.
,
Stelzl
,
D.
, &
Hinterhölzl
,
R.
(
2015
).
The effects of heat input on adjacent paths during automated fibre placement
.
Composites Part A: Applied Science and Manufacturing
,
68
,
387
397
.
15.
Rimmel
,
O.
,
May
,
D.
,
Goergen
,
C.
,
Poeppel
,
A.
, &
Mitschang
,
P.
(
2018
).
Development and validation of recycled carbon fiber-based binder tapes for automated tape laying processes
.
Journal of Composite Materials
, 0021998318820422.
16.
Zympeloudis
,
E.
,
Potter
,
K.
,
Weaver
,
P. M.
, &
Kim
,
B. C.
(
2017
).
Advanced Automated Tape Laying with Fibre Steering Capability Using Continuous Tow Shearing Mechanism
. In
21st International Conference on Composites Materials
.
17.
Belnoue
,
J. P. H.
,
Mesogitis
,
T.
,
Nixon-Pearson
,
O. J.
,
Kratz
,
J.
,
Ivanov
,
D. S.
,
Partridge
,
I. K.
, … &
Hallett
,
S. R.
(
2017
).
Understanding and predicting defect formation in automated fibre placement pre-preg laminates
.
Composites Part A: Applied Science and Manufacturing
,
102
,
196
206
.
18.
Stokes-Griffin
,
C. M.
, &
Compston
,
P.
(
2015
).
A combined optical-thermal model for near-infrared laser heating of thermoplastic composites in an automated tape placement process
.
Composites Part A: Applied Science and Manufacturing
,
75
,
104
115
.
19.
He
,
X.
,
Shi
,
Y.
,
Kang
,
C.
, &
Yu
,
T.
(
2017
).
Analysis and control of the compaction force in the composite prepreg tape winding process for rocket motor nozzles
.
Chinese Journal of Aeronautics
,
30
(
2
),
836
845
.
20.
Comer
,
A. J.
,
Ray
,
D.
,
Obande
,
W. O.
,
Jones
,
D.
,
Lyons
,
J.
,
Rosca
,
I.
, … &
McCarthy
,
M. A.
(
2015
).
Mechanical characterisation of carbon fibre–PEEK manufactured by laser-assisted automated-tape-placement and autoclave
.
Composites Part A: Applied Science and Manufacturing
,
69
,
10
20
.
21.
Shadmehri
,
F.
,
Ioachim
,
O.
,
Pahud
,
O.
,
Brunel
,
J.
,
Landry
,
A.
,
Hoa
,
V.
, &
Ho-jjati
,
M.
(
2015
, July).
Laser-vision inspection system for automated fiber placement (AFP) process
. In
20th International Conference on Composite Materials
,
Copenhagen, Denmark
, July (pp.
19
24
).
22.
Kang
,
C.
,
Shi
,
Y.
,
Yu
,
T.
,
Zhao
,
P.
,
Deng
,
B.
,
Chen
,
Z.
, &
Zhang
,
H.
(
2018
).
Experimental investigation of friction between prepreg tape and compaction roller for prepreg tape hoop winding
.
Journal of Reinforced Plastics and Composites
,
37
(
12
),
853
862
.
23.
Oromiehie
,
E.
,
Prusty
,
B. G.
,
Compston
,
P.
, &
Rajan
,
G.
(
2018
).
Characterization of process-induced defects in automated fiber placement manufacturing of composites using fiber Bragg grating sensors
.
Structural Health Monitoring
,
17
(
1
),
108
117
.
This content is only available via PDF.
You do not currently have access to this content.