The article discusses the idea of unifying and expanding the capabilities of mathematical simulation complexes focused on the development, modernization and maintenance of the life cycle of control systems for unmanned aerial vehicles and rocket and space technology. A typical practice in this field is the creation of software systems for mathematical simulation for a specific product or device [1], which often leads to the need to re-develop simulation complexes. The authors of the article implemented the principle of integration of ready-made software modules responsible for simulation: specific devices, information exchange, physical conditions and others; into a unified information system of mathematical simulation stands [2]. Integration is ensured by the creation of a universal organizational and control structure of simulation tools based on the “Yadro” software [3]. The “Yadro” software manages the information exchange by describing the interfaces of the modules, the order of connections between the modules, the clocking of the execution of the modules in pseudo-real time. Experimental modeling base, based on the presented technology, is used in industrial enterprises in the development of unmanned aerial vehicles and rocket and space technology products. The proposed principle allowed for the effective reuse of previously developed software modules, inheriting design solutions in rocket and space technology products, and providing effective support for the product life cycle from design to operation. Also, the proposed technology allows you to interact with related development organizations and operator organizations, putting forward minimum requirements for plug-in third-party software and not revealing the mathematical simulation used in the stands of know-how and other intellectual property.

1.
Stevens
,
B. L.
,
Lewis
,
F. L.
, &
Johnson
,
E. N.
(
2015
).
Aircraft control and simulation: dynamics, controls design, and autonomous systems
.
John Wiley & Sons
.
2.
Milyuchenko
S.G.
,
Kashirtsev
K.B.
,
Dmitriev
V.S.
,
Nesterenko
A.N.
,
Bolshakov
M. V.
(
2014
).
Unificirovannyj stend matematicheskogo modelirovaniya RKT [Unified stand for mathematical modeling of rocket-space technology] // Raketnye kompleksy i raketno-kosmicheskie sistemy – proektirovanie, eksperimental’naya otrabotka, lyotnye ispytaniya, ekspluataciya: Trudy sekcii 22 imeni akademika V.N. CHelomeya XXXVIII Akademicheskih chtenij po kosmonavtike
.
Posvyashchayutsya 100-letiyu so dnya rozhdeniya V.N. Chelomeya [Rocket complexes and rocket-space systems - design, experimental development, flight tests, operation: Proceedings of section 22 named after academician V.N. Chelomey]. Reutov, JSC Military-industrial corporation NPO Mashinostroenia
,
362
364
.
3.
The computer program 2014611715 Russian Federation
. The software package “Yadro” SADI.00373-01 [text]. Miluchenko S.G. [and etc.]; Applicant and rightholder JSC Military-industrial corporation NPO Mashinostroenia. - N 2013618136; declare 09/12/2013; publ. 03/20/2014.
4.
Zubov
,
N. E.
,
Misrikhanov
,
M. S.
, &
Ryabchenko
,
V. N.
(
2014
).
Synthesis of spacecraft covariance controls
.
Journal of Computer and Systems Sciences International
,
53
(
6
),
925
938
. DOI: .
5.
Kosyanchuk
V.V.
,
Selvesyuk
N.I.
,
Chuyanov
G.A.
(
2013
).
Problems of development of technologies for the design of aircraft avionics for military purposes
.
Armament and Economics
,
13
,
42
48
.
6.
Zheng
,
X.
,
Bao
,
C.
, &
He
,
Z.
(
2018
, August).
Design of Simulation Test Platform for UAV Flight Control System
. In
Journal of Physics: Conference Series
(Vol.
1069
, No.
1
, p.
012022
). IOP Publishing. DOI:
7.
Mobarez
,
E. N.
,
Ouda
,
A. N.
, &
Zekry
,
A. A.
(
2016
).
Mathematical Representation, Modeling and Linearization for Fixed Wing UAV
.
International Journal of Computer Applications
,
147
(
2
),
24
31
.
8.
Baranov
,
A. A.
(
2008
).
Change of spacecraft position in a satellite system
.
Cosmic Research
,
46
(
3
),
215
218
. DOI:
9.
Zubov
,
N. E.
,
Mikrin
,
E. A.
,
Misrikhanov
,
M. S.
, &
Ryabchenko
,
V. N.
(
2015
).
Output control of the longitudinal motion of a flying vehicle
.
Journal of Computer and Systems Sciences International
,
54
(
5
),
825
837
. DOI:
10.
Wang
,
X.
,
Li
,
K.
,
Zhao
,
N.
, &
Deng
,
H.
(
2017
, July).
Nonlinear dynamics modeling and simulation of cylindrical coaxial UAV
. In
2017 IEEE International Conference on Real-time Computing and Robotics (RCAR)
(pp.
505
510
). IEEE. DOI:
11.
Klee
,
H.
, &
Allen
,
R.
(
2018
).
Simulation of dynamic systems with MATLAB® and Simulink®
.
Crc Press. DOI
:
12.
Lugo-Cardenas
,
I.
,
Salazar
,
S.
, &
Lozano
,
R.
(
2016
, June).
The mav3dsim hardware in the loop simulation platform for research and validation of uav controllers
. In
2016 International Conference on Unmanned Aircraft Systems (ICUAS)
(pp.
1335
1341
). IEEE. DOI:
13.
Shakhtarin
,
B. I.
,
Shen
,
K.
, &
Neusypin
,
K. A.
(
2016
).
Modification of the nonlinear kalman filter in a correction scheme of aircraft navigation systems
.
Journal of Communications Technology and Electronics
,
61
(
11
),
1252
1258
. DOI:
14.
Kaidi
,
W.
,
Chuntao
,
L.
,
Peng
,
C.
, &
Ying
,
F.
(
2016
, August).
Design of real-time and multi-task UAV simulation system based on rapid prototyping
. In
2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC)
(pp.
930
936
). IEEE. DOI:
15.
Stark
,
J.
(
2015
). Product lifecycle management. In
Product lifecycle management
(Volume
1
) (pp.
1
29
).
Springer, Cham. DOI
:
16.
Ragavan
,
S. V.
,
Shanmugavel
,
M.
,
Shirinzadeh
,
B.
, &
Ganapathy
,
V.
(
2012
, November).
Unified modelling framework for UAVs using bond graphs
. In
2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)
(pp.
21
27
). IEEE. DOI:
17.
Lokhmatov
Yu.Yu.
,
Nichushkina
T.N.
(
2016
).
Programma modelirovaniya vol’t-ampernyh harakteristik i teplovydeleniya solnechnyh batarej kosmicheskogo apparata [Program for modeling current-voltage characteristics and heat dissipation of spacecraft solar batteries]
.
Tekhnologii inzhenernyh i informacionnyh sistem [Technologies of engineering and information systems]
,
2
,
45
52
.
18.
Bol’shakov
M. V.
 et al (
2014
).
For computer-aided reference data setup for navigation system
. Pat RU2012156235 (A).
19.
Kubyshkin
,
E. P.
,
Kazakov
,
L. N.
, &
Sterin
,
D. I.
(
2018
, July).
Mathematical modeling of flight reconfiguration of a unmanned aerial vehicles group
. In
2018Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)
(pp.
1
4
). IEEE. DOI:
20.
Yunerovna
,
E. L.
, &
Valerievich
,
M. I.
(
2015
, May).
Stand for scaled-down simulation for synthesis and testing the control systems of unmanned aerial vehicles
. In
2015 International Siberian Conference on Control and Communications (SIBCON) (pp. 1-5). IEEE. DOI
:
21.
Zubov
,
N. E.
,
Mikrin
,
E. A.
,
Ryabchenko
,
V. N.
, &
Proletarskii
,
A. V.
(
2015
).
Analytical synthesis of control laws for lateral motion of aircraft
.
Russian Aeronautics (Iz VUZ)
,
58
(
3
),
263
270
. DOI:
22.
Shakhtarin
,
B. I.
,
Shen
,
K.
, &
Neusypin
,
K. A.
(
2016
).
Modification of the nonlinear kalman filter in a correction scheme of aircraft navigation systems
.
Journal of Communications Technology and Electronics
,
61
(
11
),
1252
1258
. DOI: .
This content is only available via PDF.
You do not currently have access to this content.