Research results related to the study of physicochemical processes in the near-wall boundary layer occurring during the flow of nitrogen around a graphite specimen is presented. The influence of the catalytic wall on the heat flux is considered. The main attention is paid to the analysis of the distribution of chemical components concentrations across the boundary layer thickness of high-speed aircraft, based on a detailed account of the flow mechanism of heterogeneous catalytic reactions under conditions of surface mass transfer. It is shown that, oxygen is an important component of air (from the point of view of heat transfer and heating of the surface), since its recombination proceeds mainly in the low-temperature zone near the surface. Non-catalyticity appears most strongly in the frozen boundary layer when a sufficient number of non-recombined atoms appears at the surface. The diffusion of atoms from the flow to the wall will be weakened and the transfer of chemical energy will be small compared with the molecular thermal conductivity. It is interpreted that the amount of heat released during recombination can be reduced by selecting a surface with low catalytic activity. The distribution of chemical components concentrations over the boundary layer thickness at the critical point of blunt graphite body for a specific section of the flight trajectory is given.

1.
Sidnyaev
,
N.I.
(
2004
).
Obzor metodik issledovaniya obtekaniya giperzvukovym potokom gaza tel s razrushayushchimsya pokrytiem [A review of methods for studying the flow around a body with a collapsing coating in a hypersonic gas flow]
.
Teplofizika i aeromekhanika [Thermophysics and Aeromechanics]
,
11
(
4
),
501
522
.
2.
Kolesnikov
,
A. F.
(
1993
).
Usloviya modelirovaniya v dozvukovyh techeniyah teploperedachi ot vysokoental’pijnogo potoka k kriticheskoj tochke zatuplennogo tela [Simulation conditions in subsonic heat transfer currents from a high-enthalpy flow to a critical point of a blunted body]
.
Izvestiya RAN. MZHG [Bulletin of the Russian Academy of Sciences. Fluid and gas mechanics]
, (
1
),
172
180
.
3.
Sidnyaev
,
N.I.
(
2005
). Matematicheskoe modelirovanie himicheskogo aktivnogo pogranichnogo sloya pri diffuznom rezhime okisleniya [
Mathematical modeling of the chemical active boundary layer in the diffuse mode of oxidation]
.
Moscow.
:
Izdatel’stvo MGTU [Moscow: Bauman press]
,
68
81
.
4.
Wenbo
,
M.
,
Yin
,
Y.
,
Nie
,
C.
,
Dong
,
Y.
,
Cheng
,
X.
, &
Ai
,
B.
(
2017
). Surface Recombination Effects on Aero-heating of High Enthalpy Flows. In
21st AIAA International Space Planes and Hypersonics Technologies Conference
(p.
2196
).
5.
Guerra
,
V.
, &
Marinov
,
D.
(
2016
).
Dynamical Monte Carlo methods for plasma-surface reactions
.
Plasma Sources Science and Technology
,
25
(
4
),
045001
.
6.
Rutigliano
,
M.
,
Gamallo
,
P.
,
Sayós
,
R.
,
Orlandini
,
S.
, &
Cacciatore
,
M.
(
2014
).
A molecular dynamics simulation of hydrogen atoms collisions on an H-preadsorbed silica surface
.
PlasmaSourcesScienceandTechnology
,
23
(
4
),
045016
.
7.
Marinov
,
D.
,
Guaitella
,
O.
,
de los Arcos
,
T.
,
Von Keudell
,
A.
, &
Rousseau
,
A.
(
2014
).
Adsorption and reactivity of nitrogen atoms on silica surface under plasma exposure
.
Journal of Physics D: Applied Physics
,
47
(
47
),
475204
.
8.
Anna
,
A.
, &
Boyd
,
I.
(
2012
).
Computation of Surface Catalysis for Graphite Exposed to High-Enthalpy Nitrogen Flow
.
In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
(p.
534
).
9.
Deutschmann
,
O.
,
Riedel
,
U.
, &
Warnatz
,
J.
(
1995
).
Modeling of nitrogen and oxygen recombination on partial catalytic surfaces
.
Journal of Heat Transfer
,
117
(
2
),
495
501
.
10.
Marschall
,
J.
,
Martin
,
M. P.
,
Pejakovic
,
D.
, &
Duan
,
L.
(
2009
).
Characterization of Near Wall Surface Chemistry and Fluid Interaction in Hypersonic Boundary Layers (No. 1506871)
. PRINCETON UNIV NJ DEPT OF MECHANICAL AND AEROSPACE ENGINEERING.
11.
Cartry
,
G.
,
Magne
,
L.
, &
Cernogora
,
G.
(
2000
).
Atomic oxygen recombination on fused silica: modelling and comparison to low-temperature experiments (300 K
).
Journal of Physics D: Applied Physics
,
33
(
11
),
1303
.
12.
Bourdon
,
A.
, &
Bultel
,
A.
(
2008
).
Numerical simulation of stagnation line nonequilibrium airflows for reentry applications
.
Journal of Thermophysics and Heat Transfer
,
22
(
2
),
168
177
.
13.
Godart
,
C.
, &
Salvetti
,
M. V.
(
1996
, July). Numerical Comparison of Wall Catalysis Models for Hypersonic Reactive Air Flows. In
3rd Workshop on Modelling of Chemical Reactions Systems
,
Heidelberg, Germany.
14.
Bourdon
,
A.
, &
Bultel
,
A.
(
2006
). Detailed and simplified kinetic schemes for high enthalpy air flows and their influence on catalycity studies.
LABORATOIRE EM2C CNRS ECOLE CENTRALE PARIS AND CNRS CHATENAY-MALABRY
(
FRANCE
).
15.
Cauquot
,
P.
,
Cavadias
,
S. C.
, &
Amouroux
,
J.
(
1998
).
Thermal energy accommodation from oxygen atoms recombination on metallic surfaces
.
Journal of thermophysics and heat transfer
,
12
(
2
),
206
213
.
16.
Kovalev
,
V. L.
, &
Suslov
,
O. N.
(
1996
).
Simulation of the interaction between partially-ionized air and the catalytic surface of high-temperature reusable thermal insulation
.
Fluid dynamics
,
31
(
5
),
775
784
.
17.
Afonina
,
N. E.
,
Gromov
,
V. G.
, &
Kovalev
,
V. L.
(
2000
).
Modeling of the catalytic properties of high-temperature surface insulation in a dissociated carbon dioxide—Nitrogen mixture
.
Fluid dynamics
,
35
(
1
),
87
94
.
18.
Kovalev
,
V. L.
,
Kolesnikov
,
A. F.
,
Krupnov
,
A. A.
, &
Yakushin
,
M. I.
(
1996
).
Analysis of phenomenological models describing the catalytic properties of high-temperature reusable coatings. Fluid dynamics
,
31
(
6
),
910
919
.
19.
Barbato
,
M.
,
Bellucci
,
V.
, &
Bruno
,
C.
(
1998
).
Effects of catalytic boundary conditions accounting for incomplete chemical energy accommodation
. In
7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
(p.
2846
).
20.
C.
Sorensen
,
T. E.
Schwartzentruber
, and
P.
Valentini
, “
Uncertainty Analysis of Reaction Rates in a Finite Rate Surface Catalysis Model
”, in
Journal of Thermophysics and Heat Transfer
,
26
(
2011
).
21.
Buchachenko
,
A. A.
,
Kroupnov
,
A. A.
, &
Kovalev
,
V. L.
(
2014
).
First-principle study of atomic oxygen and nitrogen adsorption on (1 1 1) β-cristobalite as a model of thermal protection coverage
.
ActaAstronautica
,
100
,
40
46
.
22.
Pintassilgo
,
C. D.
,
Guerra
,
V.
,
Guaitella
,
O.
, &
Rousseau
,
A.
(
2014
).
Study of gas heating mechanisms in millisecond pulsed discharges and afterglows in air at low pressures. Plasma Sources Science and Technology
,
23
(
2
),
025006
This content is only available via PDF.
You do not currently have access to this content.