This paper considers a method of calculating aerodynamic drag of spherical calibration satellite in free molecular flow during orbital motion and presents the calculation results. The satellite is comprised of a reflecting latticed shell stretched over a rigid spherical frame. The spherical frame is comprised of rod elements in the equatorial and longitudinal directions. We propose a method of calculating shading area for the impinging flow by the lattice surface and the parts of the spherical frame carrying the latticed shell. The satellite can assume arbitrary angular positions with respect to the center of mass during uncontrolled orbital motion. Because of this the drag coefficients have to be evaluated for the cases of maximum and minimum resistance to flow. We obtain the relationship between the lattice size and the shading and transparency factors for different orientations of the spherical satellite with respect to the impinging flow velocity vector. We also provide qualitative assessment of the drag coefficient for different satellite orientations in the flow.

1.
Goziumov
,
G. I.
(
2002
).
Review of the state and development of calibration satellites
.
Issues of Radioelectronics. Radar Equipment Series
,
4
,
53
67
.
2.
Kisanov
,
Iu. A.
,
Feizulla
,
N. M.
,
Kudriavin
,
L. A.
,
Zavaruev
,
V. A.
“Materials for reflecting surfaces of the foldable space antennas”, in
Antennas: collection of scientific papers
, Issue 29, edited by
A.A.
Pistolkors
(
Radio i Svyaz
,
Moscow
,
1981
), pp.
20
25
.
3.
Okhotsimsky
,
D. E.
, &
Eneyev
,
T. M.
(
1957
).
Some variational problems related to the launch of an artificial satellite of the earth
.
Uspekhi Fizicheskikh Nauk
,
63
(
1
).
4.
Nadiradze
A. B.
, &
Rakhmatullin
R. R.
(
2012
).
Aerodynamic characteristics for grid-type surfaces under free molecular flow
.
Space Technics and Technology
,
58
, p.
13
5.
Fomin
,
V. M.
,
Mironov
,
S. G.
, &
Serdyuk
,
K. M.
(
2009
).
Reducing the wave drag of bodies in supersonic flows using porous materials
.
Technical Physics Letters
,
35
(
2
),
117
119
.
6.
Mironov
,
S. G.
, &
Serdyuk
,
K. M.
(
2012
).
Effect of mesh screens on the wave drag of a blunt body in supersonic flow
.
Thermophysics and Aeromechanics
,
19
(
2
),
201
208
.
7.
Plotnikov
,
M. Y.
, &
Rebrov
,
A. K.
(
2013
).
Supersonic rarefied gas flow through a wire grid
.
Journal of Applied Mechanics and Technical Physics
,
54
(
4
),
517
523
.
8.
Plotnikov
,
M. Y.
, &
Rebrov
,
A. K.
(
2003
, May).
Supersonic flow through a permeable obstacle
. In
AIP Conference Proceedings
(Vol.
663
, No.
1
, pp.
157
163
). AIP.
9.
Andronov
,
P. R.
, &
Guvernyuk
,
S. V.
(
2015
).
The streamline flow around a permeable plate in a plane-parallel channel
.
Journal of Applied Mathematics and Mechanics
,
79
(
3
),
270
280
.
10.
Erofeev
A. I.
,
Freedlender
O. G.
,
Perminov
V. D
, &
Svischev
S. V.
(
1995
).
Hypersonic Rarefied Gas Flow over a Porous Plate
.
Oxford University Press
,
Oxford
, Vol.
2
, pp.
1264
1269
.
11.
Guvernyuk
,
S. V.
,
Savinov
,
K. G.
, &
Ul’Yanov
,
G. S.
(
1985
).
Supersonic flow round blunt perforated screens
.
Fluid Dynamics
,
20
(
1
),
124
129
.
12.
Guvernyuk
,
S. V.
, &
Savinov
,
K. G.
(
1986
).
Supersonic flow past blunt bodies screened by a permeable surface
.
Fluid Dynamics
,
21
(
2
),
287
291
.
13.
Guvernyuk
S. V.
,
Savinov
K. G.
, &
Ulyanov
G. S.
(
1990
). Supersonic flow around a body face screened with a permeable disk, Wave Problems in Mechanics of Deformable Media, Pt. 2,
Moscow State University
,
Moscow
, pp.
101
108
.
14.
Guvernyuk
S. V.
(
2005
). Supersonic flow around bodies with mesh screens.
Gas and Wave Dynamics (Collection of Papers)
,
Iris-Press
,
Moscow.
pp.
236
242
.
15.
Zapryagaev
,
V. I.
,
Solotchin
,
A. V.
,
Kavun
,
I. N.
, &
Yarovsky
,
D. A.
(
2011
).
Impingement of a supersonic underexpanded jet onto obstacles with different permeabilities
.
Journal of applied mechanics and technical physics
,
52
(
5
),
727
.
16.
Mironov
,
S. G.
,
Poplavskaya
,
T. V.
, &
Kirilovskiy
,
S. V.
(
2017
, October).
Application of highly porous gas-permeable materials in supersonic aerodynamics
. In
AIP Conference Proceedings
(Vol.
1893
, No.
1
, p.
030151
). AIP Publishing.
17.
Guvernyuk
,
S. V.
, &
Maksimov
,
F. A.
(
2016
).
Supersonic flow past a flat lattice of cylindrical rods
.
Computational Mathematics and Mathematical Physics
,
56
(
6
),
1012
1019
.
18.
Abalakin
,
V. K.
,
Aksenov
,
E. P.
,
Grebennikov
,
E. A.
, &
Riabov
,
Y. A.
(
1971
).
Reference Guide on Celestial Mechanics and Astrodynamics
.
19.
Eliasberg
,
P. E.
Introduction to the Theory of Flight of Artificial Earth Satellites
(
Publishing house “Librocom”
,
Moscow
,
2014
), p
544
.
20.
Ivanov
,
N. M.
,
Dmitrievskii
,
A. A.
, &
Lysenko
,
L. N.
(
1986
).
Spacecraft ballistics and navigation
.
Moscow Izdatel Mashinostroenie.
21.
Barton
,
D. K.
(
1988
).
Modern radar system analysis.
Norwood, MA, Artech House
,
607
.
This content is only available via PDF.
You do not currently have access to this content.