The current study presents three-dimensional modelling and analysis of blood flow through carotid artery bifurcation in multiple cases hemodynamics modelling of fluid viscosity. The study considered Newtonian and non-Newtonian blood flow models and solved the three-dimensional laminar and steady Naiver-Stokes (NS) equations for different inlet velocity profiles. Two methods were used to define dynamic viscosity the Carreau Yasuda model and power law non-Newtonian. A comparative analysis was carried out for Newtonian and non-Newtonian fluid models under simple pulsatile, equivalent pulsatile and physiological velocity profiles. The non-Newtonian model in Carreau and power law non-Newtonian showed a higher central velocity than the Newtonian model about 10%. The non-Newtonian model showed 80% higher Wall shear stresses, either the pressure results on the arterial wall were similar in all models.

1.
Deshpande
,
M.D.
,
B.
Vinay
,
S.R.
Shankapal
,
V.M.D.
Prabhu
, and
M.G.
Srinath
.
Subject specific blood flow simulation in the human carotid artery bifurcation
.
CURRENT SCIENCE
,
2009
.
97
(
9
): p.
1303
1312
.
2.
Cornelius
,
T.L.
,
Biomechanical Systems: Biofluid methods in vascular and pulmonary systems
.
Library of Congress Cataloging-in-Publication Data
,
2001
.
3.
Bogren
,
H.G.
, and
M.H.
Bounocore
.
Complex flow patterns in the great vessels: a review
.
International Journal of Cardiac Imaging
,
1999
.
15
: p.
105
113
4.
Pythoud
,
F.
,
N.
Stergiopulos
, and
J.J.
Meister
.
Modelling of the wave transmission properties of large arteries using nonlinear elastic tube
.
Journal of Biomechanics
,
1994
.
27
: p.
1379
1381
.
5.
Torii
,
R.
,
J.
Keegan
,
N.B.
Wood
,
A.W.
Dowsey
,
A.D.
Hughes
,
G.Z.
Yang
,
D.N.
Firmin
,
S.A.
Thom
, and
X.Y.
Xu
.
A CFD Study on Coronary Artery Hamodynamics With Dynamic VEssel Motion Based on MR Images
.
Journal of Biomechanics
(Abstracts of the 16th Congress, European Society of Biomechanics),
2008
.
41
: p.
S212
.
6.
Augier
,
F.
,
O.
Masbernat
, and
Guiraud
,
P.
, “
Slip velocity and drag law in a liquid-liquid homogeneous dispersed flow
”,
AIChE journal
,
49
(
9
):
2300
2316
, (
2003
).
7.
Bessonov
,
N.
,
A.
Sequeira
,
S.
Simakov
,
Y.
Vassilevskii
, and
Volpert
,
V.
, “
Methods of blood flow modelling
”,
Mathematical Modelling of Natural Phenomena
,
11
(
1
):
1
25
, (
2016
).
8.
Shibeshi
,
S. S.
, and
Collins
W. E.
, “
The rheology of blood flow in a branched arterial system
”,
Applied Rheology
,
15
(
6
):
398
408
, (
2005
).
9.
Guerciotti
,
B.
,
Vergara
,
C.
, “
Computational comparison between Newtonian and non-Newtonian blood rheologies in stenotic vessels
”,
MOX-Report No. 19/2016
,
MOX
,
di Mathematica Polytechnic di Milano-Italy
, (
2016
).
10.
Brown
,
S.
, “
Computational Fluid Dynamic Modeling of Aortic Blood Flow
”, (Doctoral dissertation), (
2014
).
11.
Rabby
,
M. G.
,
Shupti
,
S. P.
, &
Molla
,
M. M.
, “
Pulsatile non-newtonian laminar blood flows through arterial double stenoses
”,
Journal of Fluids
,
22
(
1
):
122
134
, (
2014
).
12.
Yilmaz
,
F.
, &
Gundogdu
,
M. Y.
, “
A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions
”,
Korea-Australia Rheology Journal
,
20
(
4
):
197
211
, (
2008
).
13.
Nezamidoost
,
Sadeghy
,
K.
, &
Askari
,
V.
, “
Pulsatile flow of thixotropic fluids through a partially-constricted tube
”,
Nihon Reoroji Gakkaishi
,
41
(
2
):
45
52
, (
2013
).
14.
Baskurt
O. K.
, &
Meiselman
,
H. J.
, “Blood rheology and hemodynamics”, In
Seminars in thrombosis and hemostasis
,
Thieme Medical Publishers, Inc.
,
212
(
1
):
584
4662
, (
2003
).
15.
Doost
,
S. N.
,
Zhong
,
L.
,
Su
,
B.
, &
Morsi
,
Y. S.
, “
The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle
”,
Computer methods and programs in biomedicine
,
127
(
3
):
232
247
, (
2016
).
16.
Vlachopoulos
,
C.
,
O’Rourke
,
M.
, &
Nichols
,
W. W.
, “
McDonald’s blood flow in arteries: theoretical, experimental and clinical principles
”,
CRC press
, (
2011
).
17.
Leuprecht
,
A.
,
Kozerke
,
S.
,
Boesiger
,
P.
, &
Perktold
,
K.
, “
Blood flow in the human ascending aorta: a combined MRI and CFD study
”,
Journal of Engineering Mathematics
,
47
(
3
):
387
404
, (
2003
).
18.
Schumann
,
C.
,
M.
Neugebauer
,
R.
Bade
,
B.
Preim
, and
Peitgen
,
H.
, “
Implicit vessel surface reconstruction for visualization and CFD simulation
”,
International Journal of Computer Assisted Radiology and Surgery
,
2
(
5
):
275
286
, (
2008
).
19.
Sousa
,
L. C.
,
C. F.
Castro
, and
Antonio
,
C.
, “Blood flow simulation and applications”,
Technologies for medical sciences
.
Springer
Netherlands
, pp.
67
86
, (
2012
).
20.
Chen
,
J.
,
X. Y.
Lu
, and
Wang
W.
, “
Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses
”,
Journal of Biomechanics
,
39
(
11
):
1983
1995
, (
2006
).
21.
Molla
,
M. M.
, and
Paul
M. C.
, “
LES of non-Newtonian physiological blood flow in a model of arterial stenosis
”,
Medical Engineering & Physics
,
34
(
8
):
1079
1087
, (
2012
).
22.
Fan
,
Y.
,
W.
Jiang
,
Y.
Zou
,
J.
Li
,
J.
Chen
, and
Deng
X.
, “
Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation
”,
Acta Mechanical Sinica
,
25
(
2
):
249
255
, (
2009
).
23.
Johnston
,
B. M.
,
P. R.
Johnston
,
S.
Corney
, and
Kilpatrick
D.
, “
Non-Newtonian blood flow in human right coronary arteries: transient simulations
”,
Journal of Biomechanics
,
39
(
6
):
1116
1128
, (
2006
).
24.
Kim
,
Y. H.
,
P. J.
VandeVord
, and
Lee
,
J. S.
, “
Multiphase non-Newtonian effects on pulsatile hemodynamics in a coronary artery
”,
International Journal for Numerical Methods in fluids
,
58
(
7
):
803
825
, (
2008
).
25.
Vajravelu
,
K.
,
S.
Sreenadh
,
P.
Devaki
, and
Prasad
,
K.
, “
Mathematical model for a Herschel-Bulkley fluid flow in an elastic tube
”,
Open Physics
,
9
(
5
):
1357
1365
, (
2011
).
26.
Pontrelli
,
G.
, “
Blood flow through a circular pipe with an impulsive pressure gradient
”,
Mathematical Models and Methods in Applied Sciences
,
10
(
2
):
187
202
, (
2000
).
27.
Das
,
B.
,
G.
Enden
, and
Popel
A. S.
, “
Stratified multiphase model for blood flow in a venular bifurcation
”,
Annals of Biomedical Engineering
,
25
(
1
):
135
153
, (
1997
).
28.
Hundertmark-Zaušková
,
A.
, and
Lukáčová-Medvid’ová
M.
, “
Numerical study of shear-dependent non-Newtonian fluids in compliant vessels
”,
Computers & Mathematics with Applications
,
60
(
3
):
572
590
, (
2010
).
29.
Lou
,
Z.
, and
Yang
W. J.
, “
A computer simulation of the non-Newtonian blood flow at the aortic bifurcation
”,
Journal of Biomechanics
,
26
(
1
):
37
49
, (
1993
).
30.
Zueco
,
J.
, and
Anwar Bég
O.
, “
Network numerical simulation applied to pulsatile non-Newtonian flow through a channel with couple stress and wall mass flux effects
”,
International Journal of Applied Mathematics and Mechanics
,
5
(
2
):
1
16
, (
2009
).
31.
Marcinkowska-Gapińska
,
A.
,
J.
Gapinski
,
W.
Elikowski
,
F.
Jaroszyk
, and
Kubisz
L.
, “
Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients
”,
Medical & Biological Engineering & Computing
,
45
(
9
):
837
844
, (
2007
).
32.
Nezamidoost
,
Sadeghy
, K., &
Askari
,
V.
, “
Pulsatile flow of thixotropic fluids through a partially-constricted tube
”,
Nihon Reoroji Gakkaishi
,
41
(
2
):
45
52
, (
2013
).
33.
Doost
,
S. N.
,
Zhong
,
L.
,
Su
,
B.
, &
Morsi
,
Y. S.
, “
The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle
”,
Computer methods and programs in biomedicine
,
127
(
3
):
232
247
, (
2016
).
34.
Sharifi
,
A.
, and
Moghadam
M. C.
, “
CFD simulation of blood flow inside the corkscrew collaterals of the Buerger’s disease
”,
BioImpacts
,
6
(
1
):
41
53
, (
2016
).
35.
Manimaran
,
R.
, “
CFD simulation of non-Newtonian fluid flow in arterial stenoses with surface irregularities
”,
World Academy of Science, Engineering and Technology
,
73
(
5
):
804
809
, (
2011
).
36.
Adib
,
M. A. H. M.
, &
Hasni
,
N. H. M.
, “
Modeling of Blood Flow Velocity into the Main Artery via Left Ventricle of Heart during Steady Condition
”,
World Academy of Science, Engineering and Technology, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering
,
6
(
4
):
97
101
, (
2012
).
37.
W.
Jiang
,
Y.
Zou
,
J.
Li
,
J. Chen Biomechanical Engineering Laboratory
,
Sichuan University, 610065 Chengdu
,
China
2009
38.
J.
Vimmr
,
A.
Jonášová
,
O.
Bublík
,
Numerical analysis of non-Newtonian blood flow and wall shear stress in realistic single, double and triple aorta–coronary bypasses
,
Int. J. Numer. Method. Biomed. Eng.
29
(
10
) (
2013
)
1057
1081
.
39.
Blacher
,
J.
,
A.
Asmar
,
S.
Djane
,
G.M.
London
, and
M.E.
Safar
.
Aortic pulse wave as a marker of cardiovascular risk in hypertensive patients
.
Hypertension
,
1999
.
33
: p.
1111
1117
.
40.
Souli
M.
,
Al-Bahkali
E.
,
Moatamedi
M.
,
Investigation of Blood Flow Modelling in Artery Using ALE Formulation
.
International Journal of Computational Methods
Vol.
14
, No.
1
(
2017
)
1750001
41.
Andreas
Öchsner
,
Lucas F. M.
da Silva
,
Analysis and Design of Biological Materials and Structures
.
Springer Science & Business Media
, Jan 4,
2012
42.
Sambana
B
,
Kumar
KY
,
Prasad
RV
(
2017
)
Non-Invasive Based Patient Specific Simulation of Arteries using Lumped Models
.
Int J Radiol Radiat Ther
3
(
6
):
00081
.
This content is only available via PDF.
You do not currently have access to this content.