The prospects of the progress of radio astronomy, solar energy, as well as the exploration of the Earth surface and other planets from space are inherently linked to the possibility of deploying large structures (telescopes, antennas, energy platforms and so on) in space. These structures will be delivered to the space orbits in the densely-packed transport position. Then the process of deployment will bring them to the working position. Estimation of the orbital working capability of such transformable structures in the Earth conditions requires costly test rigs for making the structures weightless, as well as uniquely large vacuum chambers. The development of mathematical models of large transformable space structures that accurately describe their mechanical properties is especially important for designing and developing such structures. Therefore, a mathematical experiment using these models with identified parameters is very important for estimating the functional fitness of a large transformable structure being created. This paper considers a mathematical model of a multilink transformable structure that belongs to one of the simplest classes of space systems. Elements of such structures can be made of metal, as well as composite materials. The deployment of large transformable space structures can be done by force actuators: electric motors, springs, shape-memory material actuators. A mathematical model of the considered structure was built using MSC. Adams software, and numerical analysis of the deployment dynamics of a plane multilink closed foldable frame of a circular antenna with a diameter of 20 m was conducted. The results of the numerical simulation of the deployment process revealed a special feature of the deployment process: during motion, the frame elements may impact each other and the elements of the systems transporting these structures to the orbit.

1.
Lopatin
,
A. V.
, &
Rutkovskaya
,
M. A.
(
2007
).
The review of designs of modern transformed space antennas (Part 1). Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika MF Reshetneva
(
Vestnik SibGAU)
, (
2
),
51
57
.
2.
Ponomarev
,
S. V. E.
(
2011
).
Transformable reflectors of spacecraft antennas. Vestnik Tomskogo gosudarstvennogo universiteta
.
Matematika i mekhanika
, (
4
),
110
119
.
3.
Footdale
,
J. N.
, &
Banik
,
J.
(
2016
).
System Design Study of a Deployable Reflector Antenna with Flexible Shell Segments
. In
3rd AIAA Spacecraft Structures Conference (p
.
0698
).
4.
Im
,
E.
,
Thomson
,
M.
,
Fang
,
H.
,
Pearson
,
J.
,
Moore
,
J.
, &
Lin
,
J.
(
2007
, September).
Prospects of large deployable reflector antennas for a new generation of geostationary Doppler weather radar satellites
. In
AIAA SPACE 2007 Conference & Exposition (p
.
9917
).
5.
Salazar
,
R.
,
Murthy
,
S.
,
Pellazar
,
C.
, &
Stoica
,
A.
(
2017
, March).
TransFormers for lunar extreme environments: Large origami deployable solar reflectors
. In
2017 IEEE Aerospace Conference
(pp.
1
7
).
IEEE
.
6.
Hasanzade
,
V.
,
Sedighy
,
S. H.
, &
Shahravi
,
M.
(
2017
).
Compact Deployable Umbrella Antenna Design With Optimum Communication Properties
.
Journal of Spacecraft and Rockets
,
54
(
3
),
782
788
.
7.
Banichuk
,
N. V.
,
Karpov
,
I. I.
, &
Klimov
,
D. M.
(
1997
). Mechanics of large space structures.
M.: Publishing house” Factorial
.
8.
Zheng
,
F.
(
2015
).
Affordable System Conceptual Structure Design of New Deployable Spaceborne Antenna
. In
33rd AIAA International Communications Satellite Systems Conference and Exhibition (p
.
4343
).
9.
Usyukin
,
V. I.
,
Zimin
,
V. N.
,
Meshkovsky
,
V. E.
,
Panteleev
,
V. A.
, &
Feyzulla
,
N. M.
(
2000
).
Large self- deployable truss space antennae: structure and models
.
WIT Transactions on The Built Environment
,
47
.
10.
Evdokimov
,
A. S.
,
Ponomarev
,
S. V. E.
, &
Buyanov
,
Y. I. E.
(
2011
).
Joint calculation of the stress-strain state and antenna patterns of spacecraft reflectors
.
Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
, (
1
),
74
82
.
11.
Lidov
,
M. L.
(
2010
). Kurs lektsii po teoreticheskoi mehanike (Lectures on theoretical mechanics).
Moscow
:
Fizmatlit
.
12.
Wittenburg
,
J.
,
Rubanovskii
,
V. N.
, &
Rumyantsev
,
V. V.
(
1980
). Dinamika system tverdykh tel (Dynamics of rigid bodies’ systems).
Moscow
:
Mir
.
13.
Ivanov
,
A.
p. (
1997
). Dinamika sistem s mekhanicheskimi soudareniyami (Dynamics of Systems with Mechanical Collisions),
Moscow
:
Mezhd. Programma Obrazovaniya
.
14.
Krylov
,
A. V.
, &
Churilin
,
S. A.
(
2012
).
Simulation of deployment of multi-link closed space structures
.
Inzhenernyy zhurnal: nauka i innovatsii= Engineering Journal: Science and Innovation
, (
8
).
15.
Likhachev
,
V. A.
,
Razov
,
A. I.
,
Cherniavsky
,
A. G.
,
Kravchenko
,
Y.
, &
Trusov
,
S. N.
(
1994
, March).
Truss mounting in space by shape memory alloys
. In
Proceedings of the First International Conference on Shape Memory and Superelastic Technologies, California, USA
(pp.
245
248
).
16.
Schiedeck
,
F.
,
Hemsel
,
T.
, &
Wallaschek
,
J.
(
2006
). The use of shape memory alloy wires in actuators. In
Solid State Phenomena
(Vol.
113
, pp.
195
198
).
Trans Tech Publications
.
17.
Liang
,
C.
, &
Rogers
,
C. A.
(
1997
).
Design of shape memory alloy actuators
.
Journal of Intelligent Material Systems and Structures
,
8
(
4
),
303
313
.
18.
Li
,
J.
,
Zhong
,
G.
,
Yin
,
H.
,
He
,
M.
,
Tan
,
Y.
, &
Li
,
Z.
(
2017
, May). Position control of a robot finger with variable stiffness actuated by shape memory alloy. In
2017 IEEE International Conference on Robotics and Automation (ICRA)
(pp.
4941
4946
).
IEEE
.
19.
De Laurentis
,
K. J.
,
Fisch
,
A.
,
Nikitczuk
,
J.
, &
Mavroidis
,
C.
(
2002
). Optimal design of shape memory alloy wire bundle actuators. In
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) (Vol. 3
, pp.
2363
2368
).
IEEE
.
20.
Zimin
,
V. N.
, &
Meshkovsky
,
V. E.
(
2005
). Analysis of the strength of large deployable space frame elements.
WIT Transactions on Modelling and Simulation
,
41
.
This content is only available via PDF.
You do not currently have access to this content.