The paper studies the kinetics of Chernov–Lüders band propagation of bimetallic material on the yield plateau at the microscale level. The localization patterns of plastic deformation in the process of uniaxial tension are obtained by noncontact method of recording the fields of displacement vectors. Microstructure of the interfaces studied by atomic force microscopy showed that in the direction of the pearlite steel to the austenitic form there are structural components: the weakened zone of the ferrite layer; hardened section of the ferrite layer dark-pickling layer from the side of austenitic steel. Plastic deformation of a bimetal begins from the nucleation of the Lüders band on the boundaries of the bimetal on stress raisers with higher hardness due to the diffusion effect. In the main layer the Lüders band is limited to a pair of fronts moving in opposite directions along the bimetal axis with different velocities. The cladding layer does not suppress the formation of Lüders bands, leads to an increase in the propagation velocity of Lüders band fronts in the base layer and reduces the Lüders band propagation in all bimetal layers.

1.
I.
Danilov
,
S. A.
Barannikova
, and
L. B.
Zuev
,
Tech. Phys.
48
,
1429
1435
(
2003
).
2.
L. B.
Zuev
and
S. A.
Barannikova
,
Sol. St. Phen.
172–174
,
1279
1283
(
2011
).
3.
M. A.
Lebedkin
,
N. P.
Kobelev
,
Y.
Bougherira
,
D.
Entemeyer
,
C.
Fressengeas
,
V. S.
Gornakov
,
T. A.
Lebedkina
, and
V.
Shashkov
,
Acta Mater.
60
,
3729
3740
(
2012
).
4.
S. A.
Barannikova
,
L. B.
Zuev
, and
Yu. V.
Li
,
Int. J. Geom.
14
,
112
117
(
2018
).
5.
L.
Chen
,
H.-S.
Kim
,
S.-K.
Kim
, and
B. C.
De Cooman
,
ISIJ Int.
47
(
12
),
1804
1812
(
2007
).
6.
P. D.
Zavattieri
,
V.
Savic
, Jr.
,
J. R.
Hector
,
L. G.
Fekete
,
W.
Tong
, and
Y.
Xuan
,
Int. J. Plas.
25
(
12
),
2298
2330
(
2009
).
7.
M.
Eskandari
,
M. R.
Yadegari-Dehnavi
,
A.
Zarei-Hanzaki
,
M. A.
Mohtadi-Bonab
,
R.
Basu
, and
J. A.
Szpunar
,
Opt. Las. Eng.
67
,
1
16
(
2015
).
8.
A.
Khadadad
,
M.
Koçak
, and
V.
Ventzke
,
Int. J. Pres. Ves. Pip.
79
,
181
191
(
2002
).
9.
Z.
Li
,
J.
Zhao
,
F.
Jia
,
Q. Zhang X.
Liang
,
S.
Jiao
, and
Z.
Jiang
,
Int. J. Mech. Sci.
148
,
272
283
(
2018
).
10.
Y.
Kaya
and
N.
Kahraman
,
Mat. Des.
52
,
367
372
(
2013
).
11.
Y.
Li
,
M.
Gong
,
K.
Wang
,
P.
Li
,
X.
Yang
, and
W.
Tong
,
Mat. Sci. Eng.
718
,
260
266
(
2018
).
12.
Z.
Dhib
,
N.
Guermazi
,
M.
Gaspérini
, and
N.
Haddar
,
Mat. Sci. Eng. A
656
,
130
141
(
2016
).
13.
H.
Paul
,
M. M.
Miszczyk
,
R.
Chulist
,
M.
Prażmowski
,
J.
Morgiel
,
A.
Gałka
,
M.
Faryna
, and
F.
Brisset
,
Mat. Des.
153
,
177
189
(
2018
).
14.
L. X.
Yang
and
T.
Siebert
, “Digital Speckle Interferometry in Engineering,” in
New Directions in Holography and Speckle
, edited by
H. J.
Caulfield
and
C.
Vikram
(
American Scientific Publishers
,
USA
,
2008
).
15.
W. H.
Peters
and
W. F.
Ranson
,
Opt. Las. Eng.
21
,
427
431
(
1982
).
16.
B.
Reyne
,
P.
Manach
, and
N.
Moës
,
Mat. Sci. Eng. A
746
,
187
196
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.