The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ), by high-accuracy measurements of Heavy Ion (HI) induced Double Charge Exchange (DCE) reaction cross sections. In particular, the (18O,18Ne) and (20Ne,20O) reactions are used as tools for β+β+ and ββ decays, respectively. In the experiments, performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) and the reaction ejectiles are detected the MAGNEX magnetic spectrometer. The measured cross sections are challengingly low (a few nb), being the total reaction cross section much larger (a few b), thus a high sensitivity and a large rejection capability are demanded to the experimental set-up. This limits the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. A major upgrade of the LNS facility is foreseen in order to increase the experimental yield of at least two orders of magnitude, still keeping the high sensitivity of the present set-up, making it feasible a systematic study of all the cases of interest. Frontiers technologies are going to be developed, to this purpose, for the accelerator and the detection systems. In parallel, advanced theoretical models are being developed in order to extract the nuclear structure information from the measured cross sections.

1.
J.D.
Vergados
,
H.
Ejiri
, and
F.
Simkovic
,
Reports on Progress in Physics
75
,
106301
(
2012
).
2.
H.
Ejiri
,
J.
Suhonen
,
K.
Zuber
,
Phys. Rep.
797
,
1
(
2019
).
3.
J.
Barea
,
J.
Kotila
,
F.
Iachello
,
Phys. Rev. Lett.
109
,
042501
(
2012
).
4.
S.
Dell’Oro
,
S.
Marcocci
,
M.
Viel
and
F.
Vissani
,
Advances in High Energy Physics
2016
,
2162659
(
2016
).
5.
F.
Cappuzzello
 et al 
Eur. Phys. Jour. A
54
,
72
(
2018
).
6.
F.
Cappuzzello
 et al 
Journal of Physics Conference Series
630
,
012018
(
2015
).
7.
C.
Agodi
,
F.
Cappuzzello
 et al 
Nuclear and Particle Physics Proceedings
265
,
28
30
(
2015
).
8.
F.
Cappuzzello
,
M.
Cavallaro
 et al 
Eur. Phys. J. A
51
,
145
(
2015
).
9.
F.
Cappuzzello
 et al,
Eur. Phys. J. A
52
,
169
(
2016
).
10.
D.
Carbone
 et al,
Phys. Rev. C
95
,
034603
(
2017
).
11.
V.A.B.
Zagatto
 et al,
Phys. Rev. C
97
,
054608
(
2018
).
12.
M. J.
Ermamatov
 et al,
Phys. Rev. C
94
,
024610
(
2016
).
13.
F.
Cappuzzello
 et al,
Nucl. Instr. and Meth. A
763
,
314
(
2014
).
14.
F.
Cappuzzello
, et al,
Nucl. Instr. and Meth. A
638
,
74
(
2011
).
15.
F.
Cappuzzello
 et al,
Eur. Phys. J. A
51
,
145
(
2015
).
16.
S.
Calabrese
 et al,
Acta Phys. Pol. B
49
,
275
(
2018
).
17.
M.
Cavallaro
 et al,
Nucl. Instr. and Meth. B (in press)
.
18.
M.
Cavallaro
 et al,
Results in Phys.
13
,
102191
(
2019
).
19.
L.
Calabretta
 et al 
Modern Physics Letters A
32
,
17
(
2017
).
20.
M.
Cortesi
,
S.
Rost
,
W.
Mittig
, et al 
Review of Scientific Instruments
88
,
013303
(
2017
).
21.
S
Tudisco
,
F
La Via
,
C
Agodi
, et al 
Sensors
18
,
2289
(
7
).
22.
D.
Carbone
,
M.
Cavallaro
 et al,
Results in Physics
6
,
863
(
2016
).
23.
G.
De Geronimo
 et al 
IEEE Transactions on Nuclear Science
60
,
2314
2321
(
2013
).
24.
A.
Lazzaro
,
F.
Cappuzzello
,
A.
Cunsolo
 et al,
Nucl. Instr. and Methods A
585
,
136
(
2008
).
25.
A.
Lazzaro
,
F.
Cappuzzello
,
A.
Cunsolo
 et al,
Nucl. Instr. and Methods A
602
,
494
(
2009
).
26.
F.
Iazzi
,
S.
Ferrero
,
R.
Introzzi
 et al,
WIT Transactions on Engineering Sciences
116
,
61
(
2017
).
27.
H.
Lenske
 et al,
Phys. Rev. C
98
,
044620
(
2018
).
28.
H.
Lenske
 et al 
Prog. Part. And Nucl. Phys.
, (
2019
) accepted.
29.
E.
Santopinto
 et al,
Phys. Rev. C
98
,
061601(R
) (
2018
).
30.
J.I.
Bellone
 et al,
J. Phys. Conf. Ser.
1056
,
012004
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.