For the Riemannian space Vn, the invariantly associated with Vn space V˜n2 is constructed, which implements a second order approximation for Vn. We studied conformal transformations when the original space is a space of non-zero constant curvature.

1.
L.P.
Eisenhart
,
Continuous Transformation Groups
(
FLPH
,
Moscow
,
1947
). [un Russian]
2.
L.
Evtushik
,
V.
Kiosak
, and
J.
Mikesh
(
2010
)
The mobility of Riemannian spaces with respect to conformal mappings onto Einstein spaces
”,
Russian Mathematics
54
(
8
),
29
33
.
3.
V.F.
Kahan
,
Subprojective Spaces
(
Fizmatgiz
,
Moscow
,
1961
). [in Russian]
4.
V.
Kiosak
,
O.
Lesechko
, and
O.
Savchenko
, “
Mappings of spaces with affine connection
,” in
17th Conference on Applied Mathematics, APLIMAT 2018 - Procedings
(
Bratislava
,
2018
), pp.
563
569
.
5.
V.
Kiosak
and
V.
Matveev
(
2014
)
There exist no 4-dimensional geodesically equivalent metrics with the same stress-energy tensor
,
Journal of Geometry and Physics
78
,
1
11
.
6.
V.A.
Kiosak
,
V.S.
Matveev
, and
I.G.
Shandra
(
2010
)
On the degree of geodesic mobility for Riemannian metrics
,
Mathematical Notes
87
(
3-4
),
586
587
.
7.
V. A.
Kiosak
(
2012
)
On the conformal mappings of quasi-Einstein spaces
,
Journal of Mathematical Sciences
184
,
12
18
.
8.
V.
Kiosak
,
O.
Savchenko
, and
T.
Shevchenko
, “
Holomorphically Projective Mappings of Special Kahler Manifolds,” in
AMiTaNS’18
,
AIP
CP
202c
, edited by
M.D.
Todorov
(
American Institute of Physics
,
Melville, NY
,
2018
), paper
08004
.
9.
V.
Kiosak
and
I.
Hinterleitner
(
2010
)
Special Einstein’s equations on Kahler manifolds
,
Archivum Mathematicum
46
(
5
),
333
337
.
10.
V.
Kiosak
and
I.
Hinterleitner
, “(Ric)-Vector Fields on Conformally Flat Spaces,” in
AIP CP
1191
(
American Institute of Physics
,
Melville, NY
,
2009
), pp.
98
103
.
11.
A.Z.
Petrov
,
New Methods in General Theory of Relativity
(
Nauka
,
Moscow
,
1966
). [in Russian]
12.
S.M.
Pokas
, “
Infinitely small conformal transformations in the Riemannian space of the second approximation
,” in
Proc. of the Intern. Geom. Center
7
(
2014
), pp.
36
50
.
13.
S.M.
Pokas
(
2011
)
Lie groups of motions in the Riemannian space of the second approximation
,
Journal of the Penza State Pedagogical Univ. n. aft. V.G. Belinsky
6
, pp.
173
183
.
14.
S.M.
Pokas
,
A.V.
Krutoholova
, and
L.G.
Tsehmeystruk
(
2014
)
Induced mappings of Riemannian spaces of second approximation
,
Math Studios (Lviv)
41
,
220
224
.
This content is only available via PDF.
You do not currently have access to this content.