Dye sensitized solar cells (DSSCs) have fascinated researchers across the globe since their inception in 1991, due to their easy preparation protocols compared to the conventional silicon solar cells and eco-friendly nature. Most of the time best choice of metal oxide semiconductor is TiO2 because of its high electron injection rate. But on the other hand, wide band gap semiconductor such as ZnO has higher stability and electron mobility. We anticipated that combination of these two should help us to get the better devices. In this study, working electrode modification was done by using hybrid metal oxides as in the fabrication of DSSC to increase the efficiency of the device. ZnO nanoparticles were synthesized by sol-gel process. The morphology, porosity and grain size of the ZnO was studied by SEM analysis. The Particle size was further confirmed by XRD analysis. Bulk and nano TiO2 were blended individually with nano ZnO and their photo voltaic parameters were examined. Used combinations were (i) TiO2-n (ii) TiO2-b (iii) ZnO-n (iv) TiO2-n: TiO2-b in 1:1 ratio (v) ZnO-n: TiO2-n in 1:1 ratio (vi) ZnO-n:TiO2-b in 1:1 ratio respectively along with N719 dye. After assembling the electrodes, the current density-voltage characteristics of each of the combinations were evaluated. It was found that among all the combinations TiO2nano and bulk composition in the proportion 1:1 is showing the optimum efficiency than the other compositions.

1.
O’Regan
,
B.
and
Grätzel
,
M.
Nature
353
,
737
(
1991
).
2.
3.
Nazeeruddin
,
Md
K.
,
S. M.
Zakeeruddin
,
R.
Humphry-Baker
,
M.
Jirousek
,
P.
Liska
,
N.
Vlachopoulos
,
V.
Shklover
,
Christian-H.
Fischer
, and
M.
Grätzel
.
Inorg. Chem.
38
(
26
)
6298
(
1999
).
4.
Wu
,
M. X.
,
Lin
,
X.
,
Wang
,
T. H.
,
Qiu
,
J. S.
&
Ma
,
T. L.
Energy Environ. Sci.
4
,
2308
(
2011
).
5.
A.
Ashok
,
Vijayaraghavan
,
S. N.
,
Unni
,
G. E.
,
Shantikumar V
Nair
, and
Mariyappan
Shanmugam
,
Nanotechnology
,
29
,
175
(
2018
).
6.
Li
,
L.
,
Zhai
T. Y.
,
Bando
Y.
and
Golberg
D.
Nano Energy
1
,
91
(
2012
).
7.
Fukai
,
Y.
,
Kondo
,
Y.
,
Mori
,
S.
and
Suzuki
,
E.
Electrochem. Commun.
9
,
1423
(
2007
).
8.
Zhang
,
H.
,
Wang
,
Y.
,
Yang
,
D.
,
Li
,
Y.
,
Liu
,
H.
,
Liu
,
P.
,
Wood
,
B.J.
and
Zhao
,
H
,
Advanced Materials
24
, (
12
),
1598
(
2012
).
9.
I.
Jinchu
,
C.O.
Sreekala
,
Sreelatha
,
K. S.
, and
Mohan
,
R. E.
,
International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)
, pp.
4631
4635
(
2016
).
10.
Katoh
,
R.
,
Furube
,
A.
,
Yoshihara
,
T.
,
Hara
,
K.
,
Fujihashi
,
G.
,
Takano
,
S.
,
Murata
,
S.
,
Arakawa
,
H.
and
Tachiya
,
M. J.
Phys. Chem. B
108
(
15
),
4818
(
2004
).
11.
Anta
,
J. A.
,
Guillen
,
E.
and
Tena-Zaera
,
R.J.
Phys. Chem. C
116
,
26239
(
2012
).
12.
Iwana
,
P.
,
Docampo
,
P.
,
Johnston
,
M. B.
,
Snaith
,
H. J.
&
Herz
,
L. M.
ACS Nano
5
,
5158
(
2011
).
13.
Tennakone
,
K.
,
Kumara
,
G. R. R. A.
,
Kottegoda
,
I. R. M.
and
Perera
,
V. P. S.
Chem. Comm.
pp.
15
16
(
1999
).
14.
Abdulla
,
H. S.
,
Al-Haddad
,
R MS.
,
Shakir
,
O. T.
, and
Ibrahim
,
I. M.
Int. J. Sci. Eng. Res.
6
(
5
), pp.
137
142
(
2015
).
15.
V. G.
Nandakumar
,
Suresh
,
S.
,
Sreekala
,
C. O.
,
Sudheer
,
S. K.
, and
Pillai
,
V. P. M.
,
Materials Today: Proceedings
,
4
, pp.
4358
4365
(
2017
).
16.
Subramaniam
,
M. R.
, and
Kumaresan
,
D.
Chem Phys Chem
,
16
,
12
, pp.
2543
8
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.